- 相關推薦
高中數學大題解題技巧
高中數學大題解題技巧1
17題三角函數
17題考的知識點比較簡單,只要在平時多加注意和總結就不成問題,但是重要的公式譬如二倍角公式等一定要熟記,這些是做題的基礎;
18題立體幾何
18題的第一小題通常是證明題,有時利用現成的條件馬上就可以證明,但是也不排除需要做輔助線有一點難度的可能,而且形勢越來越偏向后一種,所以在平時要多多注意需要做輔助線的證明題,第二小題通常是求線面角和線線角的大小,也有可能是求相關的體積,不過這樣也是變相的讓你求線面角或線線角的大小,至于求面面角大小,我們老師說不大可能,因為求面面角的難度稍大所需要的時間也會比較多,這樣對后面的發揮會有比較大的影響,(雖然高考的目的是選拔人才,但是全省的平均分也不能太低。)
提醒一點:如果做第二小題時沒有很快有思路,那就果斷選擇向量法,向量法的難點是空間直角坐標系的建立,一定要找到三條相互垂直的線分別作為x軸y軸z軸,相互垂直一定要是能證明出來的,如果單憑感覺建立空間直角坐標系萬一錯了后面的就完全錯了。
19題導數
19題的難點是求導,如果你對復雜函數的求導掌握的很熟練,那第一小題就不用擔心啦,第二小題會比較有難度,但是基礎還是求導,無論有沒有思路都要先求導,說不定在求導的過程中就找到思路了;
20題圓錐曲線
20題是圓錐曲線,第一小題還是比較基礎的但完全正確的前提是要掌握橢圓、雙曲線、拋物線的定義,因為很有可能會出現讓你判斷某某是橢圓、雙曲線、還是拋物線的題目。第二小題比較難,但是簡單在有一定的'套路,(做題做多了就知道的)套路就是1.設立坐標,一般是求什么設什么.2.將坐標帶入所在曲線的方程中.3.利用韋達定理求出x1+x2,x1x2,y1+y2,y1y2.4.所求的內容盡力轉換為與x1、x2、y1、y2相關的式子,在轉換的過程中要結合題目的條件.一定要篩選和轉換題目中所給出的條件,因為有的方式雖然可以得出結果但是過程很復雜,浪費的時間會比較多,別忘了后面還有一個大boss呢。
21題最難
21題那實在是太難了,至少在我看來,最后一小題幾乎是寫不出來的,就算完全寫出來也需要很長的時間,那我們能做的就是在剩下為數不多的時間內盡力向老師要分數,就是能想到什么就寫下來不要打草稿直接寫。最后提一下:鈴聲響起來的那一刻,其實你的分數已經定了,無論考的好還是壞,都是既定的事實了,那就隨它去吧,爭取明天的英語才是最主要的。
注意:我有一個很好的做數學錯題的方法在這里分享給大家,就是將數學錯題分類。怎么分類呢?首先,將主要內容分類,就和課本上一樣分類,就像第一章節是關于集合第二章節是關于函數。其次,將該章節學到的內容分類,譬如集合中有并集、交集等就將錯題分為關于交集的錯題關于并集的錯題,如果是都有的話就寫到混合的錯題中。
最后,將解并集題目的方法中再進行分類,譬如分為1.利用畫數軸方法解.2.利用—方法解......這樣到時把所有的解題方法都掌握了,那么數學題還怕什么。依據以上幾點,我覺得錯題本最好是活頁的,這樣分類起來會比較方便而且可以隨時增減題目雖然方法不是特別好,但是自我感覺還是有很多可取的地方的。無論方法多么完美,只有付出行動才會有進步。
高中數學大題解題思路高考數學大題結構安排:第三步就是將化簡為一個整體的式子(如y=a的形式)根據題目要
A、三角函數與向量的結合求來解答:
B、概率論最值(值域):要首先求出的范圍,然后求出y的范圍
C、立體幾何單調性:首先明確sin函數的單調性,然后將代入sin函數的單調范
D、圓錐曲線圍解出x的范圍(這里一定要注意2的正負性)
E、導數周期性:利用公式求解
F、數列對稱性:要熟練掌握sin、cos、tan函數關于軸對稱和點對稱的公式。
高中數學大題解題技巧2
a、三角函數與向量解題技巧
平移問題:永遠記住左右平移只是對x做變化,上下平移就是對y考點:對于這類題型我們首先要知道它一般都是考我們什么,我覺做變化,永遠切記。
b、概率解題技巧
它主要是考我們向量的數量積以及三角函數的化簡問題看,同時可能會涉及到正余弦考點:對文科生來說,這個類型的題主要是考我們對題目意思的定理,難度一般不大。理解,在解題過程能學
只要你能熟練掌握公式,這類題都不是問題。會樹狀圖和列表,題目也是相當的簡單,只要你能審題準確,這類題型:這部分大題一般都是涉及以下的題型:題都是送分題;對理
最值(值域)、單調性、周期性、對稱性、未知數的取值范圍、平移科生來說,主要注意結合排列組合、獨立重復試驗知識點,同時會問題等要求我們準確掌握分
解題思路:布列、期望、方差的公式,難度也是不大,都屬于送分題,是要求第一步就是根根據向量公式將表示出來:其表示共有兩種方法,一我們必須拿全部分數。
種是模長公式(該種方法是在題目沒有告訴坐標的情況下應用),
題型:在這里我就不多說了,都是求概率,沒有什么新穎的地方,另一種就是用坐標公式表示出來(該種方法是在題目告訴了坐標),不過要注意我們曾經
即在這里遇到過的線性規劃問題,還有就是籃球成功率與命中率和防第二步就是三角函數的化簡:化簡的方法都是涉及到三角函數的誘守率之間關系的類似
導公式(只要題目出現了跟或者有關的角度,一定想到誘導公式),題目。
解題思路:
第一步就是求出總體的情況
第二步就是求出符合題意的情況
第三步就是將兩者比起來就是題目要求的概率
這類型題目對理科生來說一定要掌握好期望與方差的公式,同時最重要的是獨立重復試驗概率的求法。
c、幾何解題技巧
考點:這類題主要是考察咱們對空間物體的感覺,希望大家在平時學習過程中,多培養一些立體的、空間的感覺,將自己設身處地于那么一個立體的空間中去,這類題對文科生來說,難度都比較簡單,但是對理科生來說,可能會比較復雜一些,特別是在二面角的求法上,對理科生來說是一個巨大的挑戰,它需要理科生能對兩個面夾角培養出感情來,這樣輔助線的做法以及邊長的求法就變得如此之簡單了。
題型:
這種題型分為兩類:第一類就是證明題,也就是證明平行(線面平行、面面平行),第二類就是證明垂直(線線垂直、線面垂直、面面垂直);第二就是計算題,包括棱錐體的體積公式計算、點到面的距離、有關二面角的計算(理科生掌握)
解題思路:
證線面平行如直線與面有兩種方法:一種方法是在面中找到一條線與平行即可(一般情況下沒有現成的線存在,這個時候需要我們在面做一條輔助線去跟線平行,一般這條輔助線的作法就是找中點);另一種方法就是過直線作一個平面與面平行即可,輔助面的作法也基本上是找中點。
證面面平行:這類題比較簡單,即證明這兩個平面的兩條相交線對應平行即可。
證線面垂直如直線與面:這類型的題主要是看有前提沒有,即如果直線所在的平面與面在題目中已經告訴我們是垂直關系了,那么我們只需要證明直線垂直于面與面的交線即可;如果題目中沒有說直線所在的平面與面是垂直的關系,那么我們需要證明直線垂直面內的兩條相交線即可。
其實說實話,證明垂直的問題都是很簡單的,一般都有什么勾股定理呀,還有更多的是根據一個定理(一條直線垂直于一個面,那么這條直線就垂直這個面的任何一條線)來證明垂直。
證面面垂直與證面面垂直:這類問題也比較簡單,就是需要轉化為證線面垂直即可。
體積和點到面的距離計算:如果是三棱錐的體積要注意等體積法公式的應用,一般情況就是考這個東西,沒有什么難度的,關鍵是高的尋找,一定要注意,只要你找到了高你就勝利了。除了三棱錐以外的其他錐體不要用等體積法了哈,等體積法是三棱錐的專利。二面角的計算:這類型對理科生來說是一個噩夢,其難度有二,第一是首先你要找到二面角在什么地方,另一個難度就是你要知道這個二面角所在直角三角形的邊長分別是多少。
二面角(面與面)的找法主要是遵循以下步驟:首先找到從一個面的頂點A出發引向另一個面的垂線,垂足為B,然后過垂足B向這兩個面的交線做垂線,垂足為C,最后將A點與C點連接起來,這樣即為二面角(說白了就是應用三垂線定理來找)
二面角所在直角三角形的邊長求法:一般應用勾股定理,相似三角形,等面積法,正余弦定理等。
這里我著重說一下就是在題目中可能會出現這樣的'情況,就是兩個面的相交處是一個點,這個時候需要我們過這個點補充完整兩個面的交線,不知道怎么補交線的跟我說一聲。
d、圓錐曲線解題技巧
考點:這類題型,其實難度真的不是很大,我個人理解主要是考大家的計算能力怎么樣,還有就是對題目的理解能力,同時也希望大家都能明白圓錐曲線中a,b,c,e的含義以及他們之間的關系,還有就是橢圓、雙曲線、拋物線的兩種定義,如果你現在還不知道,趁早去記一下,不然考試的時候都不知道的哈,我真的無語了。
題型:這種類型的題一般都是以下幾種出法:第一個問一般情況就是求圓錐曲線方程或者就是求某一個點的軌跡方程,第二個問一般都是涉及到直線的問題,要么就是求范圍,要么就是求定值,要么就是求直線方程
解題思路:
求圓錐曲線方程:一般情況下題目有兩種求法,一種就是直接根據題目條件來求解(如題目告訴你曲線的離心率和過某一個點坐標),另一種就是隱含的告訴我們橢圓的定義,然后讓我們去琢磨其中的意思,去寫出曲線的方程,這種問法就比較難點,其實也主要是看我們的基本功底怎么樣,對基礎扎實的同學來說,這種問法也不是問題的。
求軌跡方程:這種問題需要我們首先對要求點的坐標設出來A(x,y),然后用A點表示出題目中某一已知點B的坐標,然后用表示出來的點坐標代入點B的軌跡方程中,這樣就可以求出A點的軌跡方程了,一般求出來都是圓錐曲線方程,如果不是,你就可能錯了。直線與圓錐曲線問題:三個步驟你還知道嗎(一設、二代,三韋達)。
先做完這個三個步驟,然后看題目給了我們什么條件,然后對條件進行化簡(一般的條件都是跟向量呀,斜率呀什么的聯系起來,希望大家注意點),在化簡的過程中我們需要代韋達進去運算,如果我們在運算的過程中遇到了,一定要記得應用直線方程將表示出來,然后根據韋達化簡到最后結果。最后看題目問我們什么,如果問定值,你還知道怎么做么,不知道的就現在來問我,如果問我們范圍,你還知道有一個東西么,如果問直線方程,你求出來的直線斜率有兩個,還知道怎么做么,如果要想舍去其中一個,你還記得一個東西么。同時如果你是一個追求完美的人,我希望你在做題的時候考慮到直線斜率存在與否的問題,如果你覺得你心胸開闊,那點分數我不要了,我考慮斜率存不存在的問題,那么我就說你牛!!
個人理解的話,圓錐曲線都不是很難的,就是計算量比較復雜了一點,但是只要我們用心、專心點,都是可以做出來的,不信你慢慢的去嘗試看看!
e、函數導數解題技巧
考點:這種類型的題主要是考大家對導數公式的應用,導數的含義,明確導數可以用來干什么,如果你都不知道導數可以用來干什么,你還談什么做題呢。在導數這塊,我是希望大家都能盡量的多拿一些分數,因為其難度不是很大,主要你用心去學習了,記住方法了,這個分數對我們來說都是可以小菜一碟的。
題型:
最值、單調性(極值)、未知數的取值范圍(不等式)、未知數的取值范圍(交點或者零點)
解題思路:
最值、單調性(極值):首先對原函數求導,然后令導函數為零求出極值點,然后畫出表格判斷出在各個區間的單調性,最后得出結論。未知數的取值范圍(不等式):其實它就是一種一種變相的求最值問題,不知道大家還記得么,記住我講課的表情,未知數放在一邊,把已知的數放在另外一邊,求出相應的最值,咱們就勝利了,這個種看起來很復雜,其實很簡單,你說呢。
未知數的取值范圍(交點或者零點):這種要是沒有掌握方法的人,覺得:哇,怎么就那么難呀,其實不然,很簡單的,只是各位你要明確這種題的解題思路哈。首先還是需要我們把要求的未知數放在一邊,把知道的數放在一邊去,這樣去求出已知數的最值,然后簡單的畫一個圖形我們就可以分析出未知數的取值范圍了,說起來也挺簡單的,如果有什么不了解的,可以馬上問我,不要留下遺憾。
f、數列解題技巧
考點:
對于數列,我對大家的要求不是很高,我只是希望大家能盡自己的所能,盡量的去多拿分數,如果要是有人能全部做對,我也替你高興,這類題型,主要是考大家對等比等差數列的理解,包括通項與求和,難度還是有的,其實你要是留意生活的話,這類題還是不是我們想象中那么困難哈。
題型:
一般分為證明和計算(包括通項公式、求和、比較大小),
解題思路:
證明:就是要求我們證明一個數列是等比數列后還是等差數列,這種題的做法有兩種,一種是用,或者,我們就可以證明其為一個等差數列或者等比數列。另一種方法就是應用等差中項或者等比中項來證明數列。
計算(通項公式):一般這個題都還是比較簡單的,這類型的題,我只要求大家能掌握其中題目表達式的關鍵字眼(如出現要用什么方法,如果出現要用什么方法,如果出現如果出現),我相信通項公式對大家來說應該是達到駕輕就熟的地步了,希望大家能把握這么容易的分數。
求和:這種題對文科生來說,應該知道我要說什么了吧,王福叉數列(等比等差數列)呀!!,
三個步驟:乘公比,錯位相減,化系數為一。光是記住步驟沒有用的,同時我也希望同學們不要眼高手低,不要以為很簡單的,其實真正能算正確的不一定那么容易的,所以我還是希望大家多加練習,親自操作一下。對理科生來說,也要注意這樣的數列求和,同時還要掌握一種數列求和,就是這個數列求和是將其中的一個等差或等比數列按照一定的順序抽調了一部分數列,然后構成一個新的數列求和,還有就是要注意了如果題目里面涉及到這個的時候,一定要記住數列相互奇偶性的討論了,非常的重要哈。
比較大。哼@種題目我對大家的要求很低,因為一般都是放縮法的問題,我也不是要求大家非要怎么樣怎么樣的,對這類問題需要我們的基本功底很深,要學會適當的放大和放小的問題,對這個問題的把握,需要大家對一些經常遇到的放縮公式印在腦海里面。
補充:在不是導數的其他大題中,如果遇到求最值的問題,一般有兩種方法求解,一種是二次函數求最值,一種就是基本不等式求最值。
高中數學大題解題技巧3
一、三角函數題
注意歸一公式、誘導公式的正確性(轉化成同名同角三角函數時,套用歸一公式、誘導公式(奇變、偶不變;符號看象限)時,很容易因為粗心,導致錯誤!一著不慎,滿盤皆輸!)。
二、數列題
1、證明一個數列是等差(等比)數列時,最后下結論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數列;
2、最后一問證明不等式成立時,如果一端是常數,另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數學歸納法(用數學歸納法時,當n=k+1時,一定利用上n=k時的假設,否則不正確。利用上假設后,如何把當前的式子轉化到目標式子,一般進行適當的放縮,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時一定寫上綜上:由①②得證;
3、證明不等式時,有時構造函數,利用函數單調性很簡單(所以要有構造函數的意識)。
三、立體幾何題
1、證明線面位置關系,一般不需要去建系,更簡單;
2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的.高、表面積、體積等問題時,最好要建系;
3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關系(符號問題、鈍角、銳角問題)。
四、概率問題
1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數;
2、搞清是什么概率模型,套用哪個公式;
3、記準均值、方差、標準差公式;
4、求概率時,正難則反(根據p1+p2+...+pn=1);
5、注意計數時利用列舉、樹圖等基本方法;
6、注意放回抽樣,不放回抽樣;
7、注意“零散的”的知識點(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透;
8、注意條件概率公式;
9、注意平均分組、不完全平均分組問題。
五、圓錐曲線問題
1、注意求軌跡方程時,從三種曲線(橢圓、雙曲線、拋物線)著想,橢圓考得最多,方法上有直接法、定義法、交軌法、參數法、待定系數法;
2、注意直線的設法(法1分有斜率,沒斜率;法2設x=my+b(斜率不為零時),知道弦中點時,往往用點差法);注意判別式;注意韋達定理;注意弦長公式;注意自變量的取值范圍等等;
3、戰術上整體思路要保7分,爭9分,想12分。
六、導數、極值、最值、不等式恒成立(或逆用求參)問題
1、先求函數的定義域,正確求出導數,特別是復合函數的導數,單調區間一般不能并,用“和”或“,”隔開(知函數求單調區間,不帶等號;知單調性,求參數范圍,帶等號);
2、注意最后一問有應用前面結論的意識;
3、注意分論討論的思想;
4、不等式問題有構造函數的意識;
5、恒成立問題(分離常數法、利用函數圖像與根的分布法、求函數最值法);
6、整體思路上保6分,爭10分,想14分。
【高中數學大題解題技巧】相關文章:
關于高中導數大題解題技巧02-11
高中數學解題技巧02-07
高中數學的解題技巧03-03
高中數學解題技巧方法06-16
高中數學解題技巧方法03-13
高中數學《導數應用》的解題技巧02-22
介紹高中數學解題技巧和方法03-02
高中數學解題技巧和方法有哪些02-23
超全整合高中數學的各類題型的解題技巧02-13