有理數的教學設計
作為一位兢兢業業的人民教師,時常需要準備好教學設計,教學設計把教學各要素看成一個系統,分析教學問題和需求,確立解決的程序綱要,使教學效果最優化。那么大家知道規范的教學設計是怎么寫的嗎?以下是小編幫大家整理的有理數的教學設計,歡迎大家借鑒與參考,希望對大家有所幫助。
有理數的教學設計1
教學目標:
1、理解加法的意義。
2、總結歸納有理數的加法法則,并能運用法則進行有理數的加法運算。
3、通過法則的探索,向學生滲透分類、歸納、轉化的數學思想。
教學重點:法則的探索與應用
教學難點:異號兩數相加
教學準備:預習教材,填上相應的空白,思考并舉出運用有理數加法的實例。
教學過程:
一、復習回顧
1、一個不為零的有理數可以看做是由哪兩部分組成的?
2、比較下列各組數絕對值哪個大?
、佟22與30;②—與;③—4.5和6
3、小學里學過哪類數的加法?引入負數后又該如何進行有理數的加法運算呢?
。ń⒃趯W生已有知識的基礎之上復習回顧與本節課相關的舊知識。)
二、新知探究
1、打開教材,請一位學生將他通過預習得到的加法算式說出來寫在黑板上,并說出該式子表示的實際意義。
2、你還能舉出類似用加法運算的實例嗎?
3、觀察這些算式,從加數上看你可以將它們分成幾類?每一類和的符號與加數的符號有何關系?和的絕對值與加數的絕對值有何關系?
4、總結歸納有理數的加法法則。
突破難點:異號相加好比正數和負數進行拔河比賽,誰的力量(絕對值)大,誰勝(用誰的符號),結果考察力量懸殊有多大(較大絕對值減較小絕對值)。
。ㄔO置問題情境,探究、總結、歸納法則。對比了華東師大版教材和北師版教材,都是以數軸為載體探究法則的,并且這種載體非常有利于理解加法的意義,以前也聽過其他老師上這節課,用多媒體課件展示向東走、向西走,要么一晃而過,要么總是糾纏不清,法則剛出來,便下課了,所以,我就更換了一種模式,讓學生先預習,然后說出這些算式的實際意義更利于理解加法的意義。我認為只要理解了加法的意義,應該說理解法則中“和”的符號與“和”的絕對值的`由來更容易一些。)
三、運用法則
例:計算
。1)(+2)+(—11)(2)(—12)+(+12)(3)(+20)+(+12)
。4)(—)+(—)(5)(—3.4)+(+4.3)(6)(—5.9)+0
思維過程:一“看”二“定”三“和差”
。ㄖ饕峭ㄟ^設置一組題目,理解法則,并展現思維過程“一看、二定、三和差”,規范學生的解題過程)
四、鞏固法則
1、開火車游戲。
第一位同學說一個算式,第二位同學說答案,第三位同學接著說一個加法算式,第四位同學說答案,依次類推,誰卡住,誰表演節目。
2、填數游戲。
將-8,-6,-4,-2,0,2,4,6,8這9個數分別填入右圖的9個空格中,使得每行的三個數,每列的三個數,斜對角的三個數相加均為0
3、思考:兩個有理數相加,和一定大于每一個加數嗎?
。ㄔO置了兩個游戲:開火車和填數,另外就是打破了小學的思維定勢“和總是大于加數”,引入負數后,是有變化的。設置問題“兩個有理數相加,和一定大于每一個加數嗎?”讓學生對有理數加法理解的更深一些。)
五、小結
加法順口溜:有理加減不含糊,同號異號分清楚;同號相加號相隨,異號相減號大絕;相反數、和為0;碰見0、不變形。
。ㄓ靡欢巍绊樋诹铩弊R記加法法則)
六、作業設計
1、練習完成在書上,習題1~2完成在作業本上。
2、在圓圈內填上彼此都不相等的數,使得每條線上的三個數之和為0。
有理數的教學設計2
一、教材分析
有理數的乘法是繼有理數的加減法之后的又一種基本運算。它既是有理數運算的深入,又是進一步學習有理數的除法、乘方的基礎。對后續知識的學習也是至關重要的。
二、學情分析
對于初一學生來說,他們雖已通過學習有理數的加減法具備了初步探究問題的能力,對符號問題也有了一定的認識,但是對知識的主動遷移能力還比較弱,因此,只要引導學生確定了“積”的符號,實質上就是小學算術中數的乘法運算了,突破了有理數乘法的符號法則這個難點,則對于有理數乘法的運算學生就不難掌握了。
三、教學目標(核心素養立意)
1、使學生理解有理數乘法的意義,掌握有理數乘法法則,并能準確地進行有理數的乘法運算。
2、初步培養學生發現問題、分析問題、和解決問題的能力。
3、通過教學,滲透化歸、分類討論等數學思想方法,激發學生學習數學、應用數學的興趣
4、傳授知識的同時,注意培養學生良好的學習習慣和勇于探索的精神。
四、教學重、難點
重點:有理數的乘法法則。
難點:有理數乘法的符號法則
五、教學策略
我在本節課的教學中采用誘思探究式教學法,并應用多媒體現代教學手段,以學生為主體,通過引導啟發、自主探究、點撥歸納完成教學任務,實現教學目標。
六、教學過程(設計為七個環節)
。ㄒ唬⿵土晫雱撛O情境
我首先出示幾個相同負數和的計算題,利用乘法的意義很自然地引出負數與正數相乘的新內容,以形成知識的遷移。進而引入本節課題,以問題引領來激發學生求知欲。
。ǘ⿴熒犹骄啃轮
要求學生自主學習課本內容,完成課文中的填空。我給與學生充足的時間和空間。通過自主學習,小組合作,教師點撥引導學生從有理數分為正數、零、負數三類的角度,區分出有理數乘法的情況有五種:(正×正、正×0、正×負、負×0、負×負)引導學生根據以上實例的`運算結果,從積的符號和絕對值兩方面準確地歸納出有理數的乘法的符號法則和有理數乘法的運算法則。(板書:法則)(確定有理數乘法運算的兩步模型:先定符號,在求絕對值)
這樣設計的目的是
。1)構造這組有規律的算式讓學生通過觀察,來發現算式和結果在符號、絕對值方面的關系,找到乘法結果的符號規律,突破本節課的難點。同時又突出了本節課的教學重點。
。2)通過比較、分析、概括、討論、展示,滲透分類討論和從特殊歸納一般的數學思想和方法,提高學生整合知識的能力。使學生知道”如何觀察”“如何發現規律”。
。ㄈ┓治龇▌t掌握實質
。ㄓ辛艘陨系恼J識)通過設置問題4,讓學生帶著以上的結論,認真觀察(—5)×(—3)這個算式,首先確定積的符號(同號得正,先定號),再確定積的絕對值(5×3=15,再求值)。第二小題讓學生仿照第一小題填空、解答,理解法則的實質,真正掌握本節課的重點。這樣設計是為了再現知識的形成過程,避免單純的記憶,使學習過程成為一種再創造的過程。
。ㄋ模┙鉀Q問題綜合運用
通過習題(小試牛刀)的計算,既鞏固了有理數乘法的法則,又明確了倒數的定義,(板書:倒數—乘積是1的兩個數互為倒數)。在有理數范圍內仍有意義。本環節通過讓學生獨立思考、分組討論,完成填空,使學生有效的鞏固重點化解難點。
。ㄎ澹w驗成功享受快樂
利用摸牌游戲,抓住學生對競爭充滿興趣的心理特征,激發學生的學習興趣,用搶答題的形式,使學生的眼、耳、腦、口得到充分的調動,并讓學生在搶答中體驗成功,享受快樂。通過學生參與活動,調動學生學習的積極性。同時讓學生通過本環節進一步理解有理數乘法法則,并在實際問題中進一步培養學生應用數學的意識,體現數學的應用價值。這也是數學核心素養的要求。
。┛偨Y收獲暢談體會
在課堂臨近尾聲時,我鼓勵學生從數學知識、數學方法和數學情感等方面進行自我評價。讓學生充分發表自己的感受,并相互補充。及時有效的回顧小結,進一步明確本節課的主要內容、思想和方法。這樣設計的目的是培養學生的歸納能力和語言表達能力,以及善于反思的好習慣。讓學生品嘗收獲的喜悅,堅定今后學習數學的信心。
。ㄆ撸┎贾米鳂I鞏固深化
七、課后反思
在課堂教學過程中,我始終堅持以觀察為起點,以問題為主線,以能力培養為核心的宗旨;遵照教師為主導,學生為主體,訓練為主線的教學原則;遵循由已知到未知、由淺入深、由易到難的認知規律;采用誘思探究教學法,把課堂還給學生,讓他們主動去參與,去探究,去分析。通過創設、引導、滲透、歸納等活動讓學生在不知不覺中掌握重點,突破難點,發展能力,養成良好的數學學習習慣。更好的促進學生全面、持續、和諧的發展。本節課的設計一定還存在不少的紕漏和缺陷,敬請各位同仁批評指正。謝謝大家!
有理數的教學設計3
《有理數加法法則》是華東師大版教材七年級上冊第二章第六節第一課時內容,主要是通過問題情境理解有理數加法的意義,探究、總結、歸納有理數的加法法則,并能根據有理數加法法則進行有理數加法運算,它是有理數運算的基礎,也是實數運算的基礎,也就是一切運算的基礎。
教法:以學生為主體創設問題情境,通過設計問題串,誘導學生探究、總結、歸納有理數的加法法則,并能自主運用法則進行計算。重點突出異號兩數相加,明確有理數的加法,名義上是加,但實際上同號是加,異號則要轉化成減法。最后將鞏固法則融入游戲中,并將法則編成順口溜,活躍課堂氣氛,讓學生學得輕松。
學法:認真聽講,積極思考回答老師提出的問題,自主分類歸納有理數的加法法則,通過將法則鞏固融入游戲、順口溜中,讓學生學得輕松,樂于學習,并提高學習的興趣。
教學目標:
1、理解加法的意義。
2、總結歸納有理數的加法法則,并能運用法則進行有理數的加法運算。
3、通過法則的探索,向學生滲透分類、歸納、轉化的數學思想。
教學重點:法則的探索與應用
教學難點:異號兩數相加
教學準備:預習教材,填上相應的空白,思考并舉出運用有理數加法的實例。
教學過程:
一、復習回顧
1、一個不為零的有理數可以看做是由哪兩部分組成的?
2、比較下列各組數絕對值哪個大?
、佟22與30;②—與;③—4.5和6
3、小學里學過哪類數的加法?引入負數后又該如何進行有理數的加法運算呢?
。ń⒃趯W生已有知識的基礎之上復習回顧與本節課相關的舊知識。)
二、新知探究
1、打開教材,請一位學生將他通過預習得到的加法算式說出來寫在黑板上,并說出該式子表示的實際意義。
2、你還能舉出類似用加法運算的實例嗎?
3、觀察這些算式,從加數上看你可以將它們分成幾類?每一類和的符號與加數的符號有何關系?和的絕對值與加數的絕對值有何關系?
4、總結歸納有理數的加法法則。
突破難點:異號相加好比正數和負數進行拔河比賽,誰的力量(絕對值)大,誰勝(用誰的符號),結果考察力量懸殊有多大(較大絕對值減較小絕對值)。
。ㄔO置問題情境,探究、總結、歸納法則。對比了華東師大版教材和北師版教材,都是以數軸為載體探究法則的,并且這種載體非常有利于理解加法的意義,以前也聽過其他老師上這節課,用多媒體課件展示向東走、向西走,要么一晃而過,要么總是糾纏不清,法則剛出來,便下課了,所以,我就更換了一種模式,讓學生先預習,然后說出這些算式的實際意義更利于理解加法的意義。我認為只要理解了加法的意義,應該說理解法則中“和”的符號與“和”的絕對值的由來更容易一些。)
三、運用法則
例:計算
。1)(+2)+(—11)(2)(—12)+(+12)(3)(+20)+(+12)
。4)(—)+(—)(5)(—3.4)+(+4.3)(6)(—5.9)+0
思維過程:一“看”二“定”三“和差”
。ㄖ饕峭ㄟ^設置一組題目,理解法則,并展現思維過程“一看、二定、三和差”,規范學生的`解題過程)
四、鞏固法則
1、開火車游戲。
第一位同學說一個算式,第二位同學說答案,第三位同學接著說一個加法算式,第四位同學說答案,依次類推,誰卡住,誰表演節目。
2、填數游戲。
將-8,-6,-4,-2,0,2,4,6,8這9個數分別填入右圖的9個空格中,使得每行的三個數,每列的三個數,斜對角的三個數相加均為0
3、思考:兩個有理數相加,和一定大于每一個加數嗎?
。ㄔO置了兩個游戲:開火車和填數,另外就是打破了小學的思維定勢“和總是大于加數”,引入負數后,是有變化的。設置問題“兩個有理數相加,和一定大于每一個加數嗎?”讓學生對有理數加法理解的更深一些。)
五、小結
加法順口溜:有理加減不含糊,同號異號分清楚;同號相加號相隨,異號相減號大絕;相反數、和為0;碰見0、不變形。
。ㄓ靡欢巍绊樋诹铩弊R記加法法則)
六、作業設計
1、練習完成在書上,習題1~2完成在作業本上。
2、在圓圈內填上彼此都不相等的數,使得每條線上的三個數之和為0。
五、小結:
用一段“順口溜”識記加法法則。
反思:“運算能力”是修訂后的課程標準提出的“十大核心概念”之一,而“有理數加法”是有理數運算的基礎,也是實數運算的基礎,也就是一切運算的基礎,有理數加法法則是有理數加法運算的準繩,更是難倒了一大片初學者,有的同學學習了有理數的加法法則不但不能敘述法則,反倒連小學學過的非負數的加法運算也不會了,如何突破這個障礙,我認為關鍵還是加法意義的理解,應讓學生置身于現實情境中搞清楚加法究竟是怎么回事,這樣一來“和”的符號的確定與“和”的絕對值的確定也就是順理成章的事兒了。
對比了華東師大版教材和北師版教材,都是以數軸為載體探究法則的,并且這種載體非常有利于理解加法的意義,以前也聽過其他老師上這節課,用多媒體課件展示向東走、向西走,要么一晃而過,要么總是糾纏不清,法則剛出來,便下課了,所以,我就更換了一種模式,讓學生先預習,熟知加法就是連續兩次變化的總結果,然后再給這些算式賦予新的實際意義更利于理解加法的意義。其實,只要理解了加法的意義,應該說理解法則中“和”的符號與“和”的絕對值的由來更容易一些,通過操作,學生對于將算式置于實際情景非常感興趣。對于接下來將算式按加數分類,探究和的符號與加數符號的關系,還有和的絕對值與加數絕對值的關系都有著濃厚的興趣,尤其是得到“互為相反的兩數相加和為零”時就有學生提到:異號兩數相加其實就是正負一抵消,余下的部分就是和?磥碇灰谡n堂上通過適當的引導讓學生自身釋放出琢磨的能量比讓學生打開大腦的錄音系統錄音要好得多。通過后續學習的考察,學生對于加法法則的記憶與應用并非停留在表面的記憶上,而是對法則有了更深層次的理解,也沒有學生刻意追求用教材上的句子一字不漏地來敘述加法法則,他們都能用自己理解的語言來說明到底是為什么。
再思考:這節課是我調入新的學校上的匯報課,領導還有同事們對我的課都做出了中肯的點評,最后一位頗有資歷的領導談到:數學教學應體現其本質,用“數軸”探究有理數的的加法更能體現加法的本質,授課者應做好合理的應用。換言之,本節課未能很好體現加法的本質。個人思考再三認為加法的本質就是“連續兩次變化的總結果”,用數軸表示向東走向西走,還是舉生活中的盈虧實例等都體現了加法的本質。新舊版本的華師大教材都是以“數軸”為載體探究有理數加法法則的,這種載體的應用主要凸顯了直觀,變化的結果一清二楚,也體現了數與形的有效結合,無疑是一種很好而有效的載體,但我們為什么不在教材現有載體的基礎上做一些突破,讓學生從多角度多方位理解加法運算呢!其實現實生活中的“盈”與“虧”生活氣息濃郁,且學生熟知,會吸引眾多的學生參與,“同號相加”就是“盈盈”型或“虧虧”型,“異號兩數相加”就是“盈虧”型,(+5)+(—5)為什么是0?顯然盈虧一樣,最終兜里沒錢!而(+3)+(—10)為什么結果取“—”且用“10—3”,盈少虧多唄!最終還是虧了7元!將加法置身于這樣的情景更有利于理解加法的意義,總結加法法則,理解加法法則。
【有理數的教學設計】相關文章:
《有理數》的教學設計09-04
有理數的乘法教學設計02-26
《有理數的加法》教學設計06-13
有理數的乘法教學設計精華08-14
有理數的乘法教學設計8篇02-26
有理數的混合運算教學設計最新01-22
有理數的乘法教學設計9篇02-26
有理數的乘法教學設計【精華5篇】01-15
七年級有理數教學設計12-08