• 《三角形內角和》教學設計

    時間:2024-03-01 14:36:47 設計 我要投稿

    《三角形內角和》教學設計范文

      作為一無名無私奉獻的教育工作者,可能需要進行教學設計編寫工作,教學設計一般包括教學目標、教學重難點、教學方法、教學步驟與時間分配等環節。那要怎么寫好教學設計呢?下面是小編為大家收集的《三角形內角和》教學設計范文,歡迎閱讀與收藏。

    《三角形內角和》教學設計范文

    《三角形內角和》教學設計范文1

      【教材分析】

      《三角形內角和》是北師大版《數學》四年級下冊的內容。是在學生學習了三角形的概念及特征之后進行的,它是掌握多邊形內角和及其他實際問題的基礎,因此,掌握“三角形的內角和是180度”這一規律具有重要意義。教材首先出示了兩個三角形比內角和這一情境,讓學生通過測量、折疊、拼湊等方法,發現三角形的內角和是180度。教材還安排了“試一試”,“練一練”的內容。已知三角形兩個內角的度數,求出第三個角的度數。

      【學生分析】

      經過近四年的課改實驗,孩子們已經有了一定的自主探究,合作交流的能力。他們喜歡在實踐中感悟,在實踐中發表自己的見解,對數學產生了濃厚的興趣。1、知識方面:學生已經掌握了三角形的概念、分類,熟悉了鈍角、直角、銳角、平角這些角的知識。2.能力方面:已具備了初步的動手操作能力和探究能力,并且能夠進行簡單的微機操作。

      【學習目標】

      知識目標:掌握三角形內角和是180度這一規律,并能實際應用。

      能力目標:培養學生主動探索、動手操作的能力。培養學生收集、整理、歸納信息的能力。使學生養成良好的合作習慣。

      情感目標:讓學生體會幾何圖形內在的結構美。

      【教學過程】

      一、情景激趣,質疑猜想。

      播放動畫片:在圖形王國中,有一天三角形大家庭里為“三角形內角和的大小”爆發了一場激烈的爭吵。

      鈍角三角形大聲叫著:“我的鈍角大,我的內角和一定比你們的內角和大!变J角三角形也不示弱:“我的銳角雖然比鈍角小,但我的內角和并不比你小!敝苯侨切握f:“別爭了,三角形的內角和都是180°。我們的內角和是一樣大的!

      師:想一想,什么是三角形的三個內角的和。

      生:三角形的三個內角的度數和。

      師:同學們剛才看了動畫片你們知道誰說對了嗎?不知道的話想一想,猜一猜誰說的對?

      學生進行猜想,自由發言。

     。ㄔO計意圖:教師借助多媒體技術創設問題情境,架起數學學習與現實生活,抽象數學與具體問題之間的橋梁,激發了學生的.學習興趣。鼓勵學生主動質疑猜想是培養學生學會學習的重要途徑。)

      二、自主探究,驗證猜想

      師:剛才大部分同學都猜直角三角形說的對。三角形的三個內角的和都是180°,你能設法驗證這個猜想嗎?

      生1:能。我量出三角形的三個內角和度數,加起來是否接近180°(量的時候可能會有些誤差)。

      生2:我把三角形的三個角剪下來拼一拼是否能拼成一個平角。

      生3:我把三角形的三個角撕下來,拼一拼是否180°。

      生4:我把三角形的三個角往里折,看一看這三個角是否折成一個平角。

      ……

      師:上面你們說了不少的驗證猜想的方法,請大家用準備好的材料用你喜歡的方法,動手驗證自己的猜想吧。▽W生把三角形的三個內角分別標上∠1、∠2、∠3,以免在剪拼時把內角搞混了。)

      學生邊實驗邊整理信息,完成實驗報告單后,學習小組內進行交流討論。

     。ㄔO計意圖:驗證猜想為學生提供了“做數學”的機會,讓每個學生圍繞自己的猜想、決定自己的探索方向、選擇自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,讓學生在操作中自主探究數學知識的產生發展過程。驗證自己的猜想,鼓勵學生用不同的方法進行驗證,促進學生創新能力的發展。)

      三、交流評價,歸納結論。

      學生操作驗證,完成實驗報告單后,利用投影儀展示學生填寫的實驗報告單。

      實驗報告單

      實驗名稱

      三角形內角和

      實驗目的

      探究三角形內角和是多少度。

      實驗材料

      尺子

      剪刀

      量角器

      銳角三角形紙片

      直角三角形紙片

      鈍角三角形紙片

      我的方法

      我的發現

      我的表現

      自評

      互評

      學生在展示過程中,充分交流和討論實驗中各自使用的方法和發現,教師要對學生的閃光點及時進行表揚和鼓勵。

      師生共同歸納,得出結論:

      三角形內角和等于180°

     。ㄔO計意圖:各學習小組匯報自己的驗證過程,展示探究的成果。對學生探索發現的方法、策略進行總結歸納,集思廣益,取長補短達到共識。在交流、歸納過程中,及時肯定其中的閃光點給予表揚和鼓勵,使他們體驗到成功的愉悅,促使他們獲得更大的成功。)

      四、分層練習,鞏固創新。

     、僬n件出示:

      師:這個三角形是什么三角形?知道幾個內角的度數?

      生:直角三角形,知道一個角是30°,還有一個角是90°!螦=90°-30°=60°。

      師:根據今天所學的知識,誰能求出A的度數?大家自己試一試。

      學生做完后反饋講評時讓學生說說自己的方法。

      生1:用三角形內角的和(180°)減去30°再減去90°,算出∠A是60°。

      ∠A=180°-30°-90°=60°。

      生2:先用30°加上90°得120°再用180°減去120°也可得∠A=60°。

     、趯W生完成完成P29的第一題。

      引導學生按照前面的方法獨立完成,教師巡視,集體訂正。

     、鄄乱徊氯切蔚牧硗鈨蓚角可能各是多少度。

      同桌同學互相說一說。(答案不唯一)

     、苄〗M操作探究活動。

      讓學生剪出幾個不同的四邊形,按表中所給的方法以做一做,并填一填。

      方法

      四邊形內角和

      用量角器量出每個內角的度數,并相加。

      把四邊形四個角剪下來,拼在一起。

      把四邊形分為兩個三角形。

      填表后讓學生想一想、互相說一說,四邊形內角和是多少度?

     。ㄔO計意圖:引導學生將探究學習活動中所獲得的結論經驗和方法運用于探索解決簡單的實際問題。組織學生參與具有趣味性、操作性和開放性的練習活動,讓學生在鞏固練習中培養動手能力、實踐能力和創新思維。)

    《三角形內角和》教學設計范文2

      背景分析:

      在學習“三角形的內角和”之前,學生已經學習了三角形的特性和分類,知道平角的度數是180°,并且能夠用量角器測量角的大小!叭切蔚膬冉呛褪180°”是三角形的一個基本特征,也是“空間與圖形”領域中的重要內容之一,學好它有助于學生理解三角形三個內角之間的關系,也為以后進一步學習幾何知識打下良好的學習基礎。

      教學目標:

      1、通過測量、剪拼、折拼等活動讓學生全面經歷探索和發現“三角形的內角和等于180°”的過程。

      2、會用“三角形的內角和等于180°”這個結論進行一些簡單的計算和推理。

      3、體會數學學習的魅力,體驗探究學習的樂趣。

      教學重難點:

      探索和發現三角形的內角和等于180°。

      教具準備:

      多媒體課件、一副三角板、量角器、三角形紙片。

      學具準備:

      每個小組準備4個量角器、4把剪刀、兩副三角板、兩個學具袋,兩個學具袋中各裝有2個完全相同的銳角三角形、1個直角三角形、一個鈍角三角形。其中1號學具袋中,還裝有表格紙一張。

      教學過程:

      一、導入課題

      1、故事引入,激發興趣

      同學們,今天,老師給大家帶來一個小故事,想聽嗎?

      課件顯示數學家——帕斯卡的圖片

      師:孩子們,你們認識他嗎?這可是位了不起的人物,他的名字叫帕斯卡。他可是位數學奇人,從小就癡迷于數學,可帕斯卡的父親卻不支持他學習數學,因為,他從小就體弱多病,然而,這并不能阻擋帕斯卡對數學的熱愛,一個個數學問題就像磁石一樣深深地吸引著帕斯卡。他常常背著父親一個人偷偷琢磨。12歲那年,他發現了一個改變他一生的數學問題,當父親知道后激動的熱淚盈眶。從此以后,父親不僅支持他學習數學,而且還盡全力幫助他。在父親的幫助下,帕斯卡成為了世界著名的數學家、物理學家。

      師:究竟是什么發現讓父親的態度發了180°的大轉彎呢,想知道嗎?

      揭示并板書課題:三角形的內角和。生齊讀課題。

      2、明確目標

      學貴有疑,看到這個課題,你想知道些什么?或者你有什么疑問?(什么是三角形的內角和?三角形的內角和是多少度?)

      3、效果預期

      帶著這些問題,我們一起走進今天的探究之旅,老師期待大家的精彩表現,大家準備好了嗎?。

      〖評析〗教師用數學家生動的勵志故事導入新課,從情緒上深深感染了學生,激發了學生的學習興趣,喚起了學生的求知欲望,同時,也為數學文化的引入作了必要的鋪墊。

      二、民主導學

      1、任務呈現

     。1)認識內角、內角和

      師:同學們還認識這些三角形寶寶嗎?三角形按角分,能分為銳角三角形、鈍角三角形、直角三角形。

      師:老師手里拿的是?(三角板)它是什么三角形?(直角三角形)老師把它打在白板上。

      師:每個三角形的里面都有3個角,我們把它們稱之為三角形的內角,為了方便,我們給他們分別編上編號∠1、∠2、∠3,師:請同學們拿出2號袋中的三角形,快速找出三角形的三個內角,然后像老師這樣給他們分別標上∠1、∠2、∠3

      師:這個三角板上的三個內角分別是多少度呢?現在我們把這三個內角的度數加起來是(180°),算得真快,也就是說這個三角形的內角和180°這個三角形的內角和呢?也是180°也就是這兩個三角形的內角和都是180°。

      師:請大家看這里,如果把這個三角形的三個內角搬個家,都搬到一起,能拼成我們學過的什么叫?(平角)平角是多少度?(180°)

      師:這是我們學過的特殊三角形,對吧,那么像黑板上這些一般的三角形內角和會是多少度呢?我們先來猜想一下好不好?誰來猜?同學們都認為三角形的內角和是180°,但口說無憑呀,到底是不是180°我們應該驗證一下,對吧?

      師:我們現在開始驗證好嗎?動手之前,請聽好活動要求

      屏幕出示要求,指名學生讀:

      想一想,你打算怎樣驗證,在小組內交流你的想法,共同確定一種驗證方法;

      想用量的方法驗證的小組,請取出1號袋中的表格和三角形,根據表格上的內容完成相應的測量、計算,并向小組長匯報,小組長負責填空匯總;

      想用其它方法驗證的小組,請取出2號袋中的三角形,小組長做好分工,每兩個同學用一個三角形進行驗證或一人單獨驗證,動手前,先討論討論該怎么做,然后試著拼一拼;

      驗證結束后,小組內交流你們的發現,回憶驗證過程,做好匯報準備。

      2、自主學習

      學生分組活動,教師巡視指導。(用量的方法的要填寫學具袋中的表格)

      3、展示交流(提示:匯報時,要說清楚你研究的三角形的類型)

      師:來吧孩子們,該到全班交流的時候了。哪個小組愿意先把你們的成果與大家一起分享。

     。、剪拼法(撕拼法)

      這個小組通過剪拼得出三角形的內角和是180

      B、折拼法

      剛才拼的過程中,老師發現有個孩子特別的難過,因為他覺得這些三角形寶寶太可憐了,我們把這些三角形寶寶都大卸三塊兒了,的確是這樣,現在動腦筋想想,在不破壞三角形的情況下,能不能想辦法把三角形的三個內角弄成一個平角?(折)那你們就試試,(行,不行)到底行不行,老師給大家演示一下,先標出三個內角,把∠1折下來,把∠2、∠3分別靠過來,現在觀察一下,這三個角通過折的方法拼成平角了嗎?行還是不行,剛才說不行的'孩子一定沒按這種方法折,下面請按老師的方法試試

      C、測量法

      用量的方法的小組,你們得出的三角形的內角和都是180°,不是180°的請舉手,一樣的三角形為何測量得出的結果不一樣,是什么原因呢?(誤差)由于測量工具測量方法等原因,會難免會有誤差,正因為這些誤差,導致測量結果五花八門,各不相同,現在你們的疑惑解開了嗎?

      剛才我們猜想三角形的內角和可能是180°,現在你想說什么?(一定、肯定、絕對、百分之百)

      小結:通過剛才同學們的驗證,得出了什么結論(板書:結論)三角形的內角和是180°。大家發現了嗎?無論是撕一撕、折一折、還是拼一拼,這些方法都有異曲同工之妙,都把本不在一起的三個角,通過移動位置,把它轉化成一個平角來驗證,都用了轉化的策略(板書:轉化)。希望大家能把轉化的方法運用到今后的學習中去,去解決更多的數學問題。

      〖評析〗探索三角形內角和的過程,既是解決數學問題的過程,也是培養學生動手實踐能力和科學精神的過程。在這一過程中,學生既經歷了新知的形成過程,又獲得了成功的體驗。

      4、數學文化介紹

      你們想知道12歲的帕斯卡是用什么方法研究的嗎?誰來猜一猜?

      生:

      師:(邊演示邊介紹)他把長方形分成兩個完全相同的直角三角形,其中一個直角三角形的內角和就是180°

      師:接下來,他就想其他三角形的內角和是不是180°呢?于是,他任意畫了一個三角形并做高,誰看懂他的意思了?

      生:分成了兩個直角三角形。

      師:你真會觀察,請大家看,∠1+∠2=

      生:90°

      師:∠3+∠4=

      師:那么這個三角形的內角和就是

      生:180°

      師:由此說明任意三角形的內角和都是180°。你們覺得帕斯卡的方法怎么樣?

      生:巧妙!

      師:是的,他的方法太巧妙了。今天同學們用自己的聰明才智也研究出了三角形的內角和是180°,老師相信你們的父親也會為你們感到驕傲!下面,我們就用這個結論,來解決一些數學問題。

      〖評析〗通過對數學文化的介紹,讓學生了解帕斯卡的證明過程,既開闊了學生的知識視野,要引導學生的思維由具體到抽象,培養了思維的嚴謹性,同時激發了學生對數學家的崇敬之情,讓學生體驗到數學邏輯的論證之美,進而產生了對數學的熱愛。

      5、練習

     。1)猜一猜:在一個三角形中,∠1=30°,∠2=50°,∠3等于多少度?師:讓學生回答:說說怎么想的?

     。2)2、算一算:三角形每個內角是多少度?師:課件出示后,請大家拿出答題紙快速解答下面的問題:

      求出等邊三角形每個角的度數?

      等腰三角形頂角96°,底角是多少度?

      直角三角形的一個銳角是40°,另一個銳角是多少度?

      〖評析〗練習設計科學合理,層次清晰,針對性強,讓學生較好地鞏固了所學知識;拓展性練習不僅加深了學生對新知識的理解和掌握,而且要滿足了不同層次學生的認知需要,同時培養了學生思維的靈活性,促進了思維的發展。

      三、檢測導結(下面進入檢測環節,大家愿意接受挑戰嗎?)

      1、目標檢測(見檢測卡)

      2、結果反饋

      集體訂正

      課外作業:那么四邊形、五邊形、六邊形的內角和分別是多少呢?作為課后作業,課后探究。

      3、反思總結

      回顧一下今天學的內容,你有什么收獲?

      大家真的非常了不起,不僅學到了數學知識,更重要的是經歷了猜想、驗證、得出結論、應用的科學探究的過程,老師送給大家一句話:“在數學的天地里,重要的不是我們知道什么,而是我們怎么知道的!呥_哥拉斯”

      其實在歷史上有許多數學家都曾經研究過三角形的內角和,最早研究的誰,你們知道嗎?

      生:帕斯卡

      師:NO,另有其人,如果大家感興趣,課后可以去查一查。

      〖評析〗引導學生回顧本節課所學知識,有助于對所學內容的內化和提升。同時,將數學文化自然延伸到到課外,使數學文化貫穿整節課的始終。

    《三角形內角和》教學設計范文3

      教學內容:

      義務教育課程表準教科書數學(人教版)四年級下冊85頁。例題5.

      教學目標:

      1、讓學生親自動手,通過量、剪、拼等活動發現、證實三角形內角和是180°,并會應用這一知識解決生活中簡單的實際問題。

      2、讓學生在動手獲取知識的過程中,培養學生的創新意識、探索精神和實踐能力。并通過動手操作把三角形內角和轉化為平角的探究活動,向學生滲透“轉化”數學思想。

      3、使學生體驗成功的喜悅,激發學生主動學習數學的興趣。

      教學重點:

      讓學生經歷“三角形內角和是180°”這一知識的形成、發展和應用的全過程。

      教學準備:

      多媒體課件、學具。

      教學過程:

      一、激趣引入

     。ㄒ唬┱J識三角形內角

      1、我們已經認識了三角形,什么是三角形?誰能說三角形按角分類,可以分成哪幾類?(學生回答問題。)

      2、請看屏幕(課件演示三條線段圍成三角形的過程)。

      三條線段圍成三角形后,在三角形內形成了三個角,(課件分別出現三個角的弧線),我們把三角形里面的這三個角分別叫做三角形的內角。

     。ǘ┰O疑,激發學生探究新知的心理

      1、請同學們幫老師畫一個三角形,能做到嗎?(激發學生主動學習的心理)請聽要求,畫一個有兩個內角是直角的`三角形,開始。(設置矛盾,使學生在矛盾中去發現問題、探究問題。)

      學生安要求畫三角形。

      2、問:有誰畫出來啦?

     。ㄕn件演示):是不是畫成這個樣子了?只能畫兩個直角。問題出現在哪兒呢?這一定有什么奧秘?那就讓我們一起來研究吧!

      二、動手操作,探究新知

     。ㄒ唬┭芯刻厥馊切蔚膬冉呛

      1、請看屏幕。(播放課件)熟悉這副三角板嗎?(課件閃動其中的一塊三角板)

      學生回答:90°、45°、45°。(課件演示:由三角板抽象出三角形)

      這個三角形各角的度數。它們的和是多少?

      學生回答:是180°。

      追問:你是怎樣知道的?

      生:90°+45°+45°=180°。

      把三角形三個內角的度數合起來就叫三角形的內角和。

      板題:三角形內角和

      2、(課件演示另一塊三角板的各角的度數。)這個呢?它的內角和是多少度呢?

      90°+60°+30°=180°。

      3、從剛才兩個三角形內角和的計算中,你發現什么?

      這兩個三角形的內角和都是180°。這兩個三角形都是直角三角形,并且是特殊的三角形。

     。ǘ┭芯恳话闳切蝺冉呛

      1、猜一猜。

      猜一猜其它三角形的內角和是多少度呢?同桌互相說說自己的看法。

      2、操作、驗證一般三角形內角和是180°。

     。1)小組合作、進行探究。

      1、所有三角形的內角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?那就請四人小組共同研究吧!

      2、每個小組都有不同類型的三角形。每種類型的三角形都需要驗證,小組活動的要求如下:課件顯示

      組長負責填寫表格,組員每人負責量一個三角形的每個內角,并記錄下來,最后算出這個三角形的內角和,把結果告訴組長。

      量一量,完成表格。

      三角形的名稱

      內角和的度數

      銳角三角形

      直角三角形

     。2)小組匯報結果。

      請各小組匯報探究結果。

     。ㄈ├^續探究

      沒有得到統一的結果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?

      引導學生用拼合的辦法,就是把三角形的三個內角放在一起,可以拼成一個平角。

      1、用拼合的方法驗證。

      小組內完成,活動的要求同上。

      拼一拼,完成表格。

      三角形的名稱

      是否可以拼成平角

      銳角三角形

      直角三角形

      對角三角形

      2、匯報驗證結果。

      先驗證銳角三角形,我們得出什么結論?

     。ㄤJ角三角形的內角拼在一起是一個平角,所以銳角三角形的內角和是180°。

      直角三角形的內角和也是180°。

      鈍角三角形的內角和還是180°)。

      3、課件演示驗證結果。

      請看屏幕,老師也來驗證一下,是不是跟你們得到的結果一樣?(播放課件)

      我們可以得出一個怎樣的結論?

     。ㄈ切蔚膬冉呛褪180°。)

     。ń處煱鍟喝切蔚膬冉呛褪180°學生齊讀一遍。)

      為什么用測量計算的方法不能得到統一的結果呢?

     。康牟粶。有的量角器有誤差。)

      三、解決疑問。

      現在誰能說說不能畫出有兩個直角的一個三角形的原因?(讓學生體驗成功的喜悅)

     。ㄒ驗槿切蔚膬冉呛褪180°,在一個三角形中如果有兩個直角,它的內角和就大于180°。)

      在一個三角形中,有沒有可能有兩個鈍角呢?

     。ú豢赡。)

      追問:為什么?

     。ㄒ驗閮蓚銳角和已經超過了180°。)

      問:那有沒有可能有兩個銳角呢?

     。ㄓ,在一個三角形中最少有兩個內角是銳角。)

      四、應用三角形的內角和解決問題。

      1、看圖求出未知角的度數。(知識的直接運用,數學信息很淺顯)

      2.85頁做一做:

      在一個三角形中,∠1=140度,∠3=35度,求∠2的度數。

      3.88頁第9.10題(數學信息較為隱藏和生活中的實際問題)

      4.89頁16題。思考題

      板書設計:

      三角形內角和

      180°180°180°

      三角形內角和180°

    《三角形內角和》教學設計范文4

      一、說教材

      北師版八年級下冊第六章《證明一》,是在前面對幾何結論已經有了一定的直觀認識的基礎上編排的,而前幾冊對有關幾何結論都曾進行過簡單的說理,本章內容則嚴格給出這些結論的證明,并要求學生掌握證明的一般步驟及書寫表達格式!度切蝺冉呛投ɡ淼淖C明》則是對前幾節證明的自然延續。此外,它的證明中引入了輔助線,這些都為后繼學習奠定了基礎。

      二、說目標

      1.知識目標:掌握“三角形內角和定理的證明”及其簡單的應用。

      2.能力目標培養學生的數學語言表達、邏輯推理、問題思考、組內及組間交流、動手實踐等能力。

      3.情感、態度、價值觀:

      在良好的師生關系下,建立輕松的學習氛圍,使學生體會獲得知識的成就感及與他人合作的樂趣,以增強其數學學習的自信心。

      4.教學重點、難點

      重點:三角形的內角和定理的證明及其簡單應用。

      難點:三角形的內角和定理的證明方法的討論。

      三、說學校及學生現實情況

      我校是藍田縣一所普通初中,四面非山即嶺,距藍田縣城四十里之遙。但由于國家對西部教育的大力支持,學校有遠程多媒體網絡教室,為師生提供了良好的學習硬件環境。我校學生幾乎全部來自本鎮農村,而我所教授的八年級四班學生,大多家庭貧苦,所以學習認真踏實,有強烈的求知欲;此外,善于鉆研是他們的特點,并且,有較強的合作交流意識。

      四、說教法

      根據本節課教學內容特點,我采用啟發、引導、探索相結合的教學方法,使學生充分發揮學習主動性、創造性。

      五、說教學設計

      〈一〉、創設情景,直入主題

      一堂新課的引入是教師與學生活動的開始,而一個成功的引入,可使學生破除畏難心理,對知識在短時間內產生濃厚的興趣,接下來的教學活動就變得順理成章。我的具體做法是:簡單回憶舊知識,“證明的一般步驟是什么?”學生輕松做答,我肯定之后緊接著說:“本節課就是用證明的方法學習一個熟悉的結論!是什么呢?請看大屏幕!”。盡量使問題簡單化,這樣更利于學生投入新課。

      〈二〉、交流對話,引導探索

      1、巧妙提問,合理引導

      證明思想的`引入時,問:同學們,七年級時如何得到此結論?(留一定時間讓他們討論、交流、達成共識)學生回答后,我及時肯定并鼓勵后拋出問題:他們的共同之處是什么?學生容易回答:湊成一平角。我說:很好!那你們用這樣的思想能證明這個命題是個真命題嗎?趕快試試吧!這樣,既引導了證明的方向,又激發了學生的學習興趣。接下來學生做題,我巡視。同時讓一學生板演。

      2、恰當示范,培養學生正確的書寫能力

      在學生做完之后,我與他們一道分析板演同學證明是否合理,并利用多媒體給出正確書寫方法。

      3、一題多解,放手讓學生走進自主學習空間

      正因為學生的預習,所以他們證明的方法有所局限,這時,我拋出問題:再想想,還有其他方法嗎?將課堂時間又交還他們,將其思維推向高潮。學生思考,繼而熱烈討論,此時,我又走到學生中去,對有困難的學生多加關注和指導,不放棄任何一個,同時,借此機會增進教師與學困生之間的情誼,為繼續學習奠定基礎。最后,請有新方法的同學敘述其思想方法,我用大屏幕展示不同做法的合情推理過程。

      4、展示歸納,合理演繹

      利用多媒體展示三角形內角和定理的幾種表達形式,以促其學以致用。

      5、反饋練習

      用隨堂練習來鞏固學生所學新知,另一方面進一步提高學生的書寫能力。同時,在他們作完之后,多媒體展示正確寫法,加強教學效果。

      〈三〉、課堂小結

      1 采用讓學生感性的談認識,談收獲。設計問題:

      2(1)、本節課我們學了什么知識?

     。2)、你有什么收獲?

      目的是發揮學生主體意識,培養其語言概括能力。

      六、說教學反思

      本節課主要是以嚴謹的邏輯證明方法,驗證三角形內角和等于180度。讓學生充分體會有理有據的推理才是可靠的。而證明思想、書寫的培養,是本節課的重點。自主學習、合作交流是新課程理念,也是我本節課的設計意圖。從學生課堂表現可以看出,教學效果良好。而學生的一些出乎意料的做法讓我倍感驚喜!把學生還給課堂,把課堂還給學生,也是我一貫的做法。

    《三角形內角和》教學設計范文5

      教學目標:

      1、教會學生主動探究新識的方法,學會運用轉化遷移數學思想。

      2、學生通過量、剪、拼、擺、分割等驗證三角形內角和方法的比較,主動掌握三角形內角和是1800,并運用所學知識解決簡單的實際問題,發展學生的觀察、歸納、概括能力和初步的空間想象力。

      教學重點:理解并掌握三角形的內角和是180°。

      教學難點:驗證所有三角形的內角之和都是180°。

      教具準備:多媒體課件。

      學具準備:量角器、正方形、剪刀、各類三角形(包括直角三角形、銳角三角形、鈍角三角形)

      教學過程:

      一、導入

      師:知道今天我們學習什么內容嗎?我們先來解讀一下課題,三角形,你手中有么?舉起來我看看,你拿的什么三角形?你呢?師:三角形按角分類,可分為直角三角形、鈍角三角形和銳角三角形。

      師:什么是內角?你能把你手中三角形的三個內角用角1、角2、角3標出來嗎?

      師:還有一個關鍵字“和”,什么是三角形的內角和?

      師:你認為三角形的內角和是多少度?你呢?都知道?是多少度?看來都知道了,就不用再學了吧?你還想學什么?

      師:看來我們不僅要知道三角形的內角和是180度,還要親自證明一下為什么是180度。這才真了不起呢。能證明嗎?你想怎么證明阿?

      生:量一量的方法。

      師:光量就知道了?還要算一算。

      師:這種方法可行嗎?下面咱就來試試,請同學們4人一組,分工合作,先測量內角,再計算求和。小組長把計算的過程記錄下來。開始吧。

      驗證:量角、求和

      小組匯報

      生一:我們組量的是銳角三角形,三個角分別是50度、60度、70度,銳角三角形的內角和是180度。

      生二:我們組量的是直角三角形,三個角分別是90度、35度、55度,直角三角形的內角和是180度。

      生三:我們組量的是鈍角三角形,三個角分別是120度、40度、20度,鈍角三角形的內角和是180度。

      師:從剛才的交流中,你發現了什么?

      生:不管是銳角三角形、直角三角形,還是鈍角三角形,內角和都是180度。

      師:下面同學測量得出180度的請你舉手,有沒有不是180度的?為什么有不同的答案呢?反思一下。我們在測量的時候容易出現誤差,得出的結論就難以讓人信服?磥硭坪跤昧康姆椒ㄟ不能充分證明。(劃問號)

      師:還敢接受更大挑戰嗎?把量角器和你的工具都收起來,只借助這張三角形紙片證明出三角形的內角和是180度,你有辦法嗎?或許下面的同學還有別的方法,下面就請同學們互相交流交流,動手試一試吧!

      師:這種方法怎么樣?(鼓掌)老師感到非常的驚喜,你看他們沒有破壞三角形,就這樣輕輕的一折,就解決了問題,真是很巧妙。

      師:你們小組每個同學都動腦筋了,謝謝你們。

      師:還有那個小組用的這種方法?你們也非常的聰明。還有別的方法嗎?

      師:其實大家能用3種方法證明已經很不簡單了,現在我們就能很自信的說三角形的內角和是180度。(擦別的)

      師:其實對我來說重要的不是知識的結論,讓老師感動的是你們那種渴望求知,敢于探索的精神。更讓老師高興的是你們積極思考所得出的創造性的方法,F在我們再來一塊回顧一下。

      師:這幾種方法都足以說明三角形的內角和是180度。(結論)

      師:剛才同學們發揮自己的聰明才智,想了很多方法來證明。王老師也有一種方法能證明。老師這里有一個活動角,借助課本的一邊就構成了一個三角形,請你睜大眼睛仔細觀察,你發現了什么?

      請你再仔細觀察,你發現了什么?其實兩個底角減少的度數,正是頂角增大的度數。如果我繼續按下去你覺得會怎樣?我們來看看是不是這樣,三角形呢?兩個底角呢?剛才三角形的動態過程是不是也能證明三角形的內角和是180度?

      師:看來只要大家肯動腦筋,面對同一問題就會有不同的解決方法。

      師:現在我們知道了“三角形的內角和是180度”,能不能用這個知識來解決一些問題?

      生:能。

      二、遷移和應用

     。ㄒ唬c將臺:

      下面哪三個角是同一個三角形的內角?

     。1)30 °、60 °、45 °、90 °

     。2)52 °、46 °、54 °、80 °

     。3)45 °、46 °、90 °、45 °

     。ǘ┪視

      1、已知∠1,∠2,∠3是三角形的三個內角。

     。1)∠1=38° ∠2=49°求∠3

     。2)∠2=65° ∠3=73° 求∠1

      2、已知∠1和∠2是直角三角形中的兩個銳角

     。1)∠1=50°求∠2

     。2)∠2=48°求∠1

      3、已知等腰三角形的一個底角是70°,它的頂角是多少度?

     。ㄈ。變變變!

     。1)一個三角形中, ∠1 、∠2、∠3。

     。2)如果把∠3剪掉,變成了幾邊形?它的`內角和變成多少度呢?

     。3)如果再把∠2剪掉,剩下圖形的內角和是多少度呢?

      三、全課小結

      師:通過一節課的探索,你有什么收獲?

      生答(略)

      我的幾點認識:

      結合《三角形的內角和》這節課,我對空間與圖形這一部分內容,簡單的談一下自己的認識。

      空間與圖形這一部分內容,可以用這幾個字來概括:難理解,難受,難掌握。在本節課的教學中,三角形的內角和概念比較抽象,學生比較難理解。尤其是讓學生探究三角形的內角和是180度,對學生來說更是難上加難。如果光憑在頭腦中想,不動手實踐,對于三角形的內角和,學生也只能機械記憶是180度。那如何更好的讓學生掌握和接受呢?針對這些特點我采用了一下幾點做法:

      1、根據學生的知識特點和生活經驗,在原有基礎上創造性的使用教材。

      在教學本節課的內容時,學生在自己的日常生活或大部分都已經知道三角形的內角和是180。因材在這樣的情況下,我創造性的使用教材。不是讓學生通過自己動手操作之后才發現三角形的內角和是180,而是直接把問題拋給學生,你們知道三角形的內角和是多少度嗎?

      你們怎么知道的?能自己證明么?這樣學生從被動學習者的角色,立刻轉入主動學習者的角色之中。這樣既能使學生很好的掌握知識,又能使學生激發興趣,提高積極性。

      2、讓學生在小組交流中進行思維的碰撞,在動手操作的實踐過程中得到知識情感價值的升華。

      在探究的過程中,我們采用了小組合作學習方式,這樣既能給學生提供交流的空間,又能在短時間內有效學習。學生先交流方法,商定出可行的辦法和方略,然后合作進行實踐。學生會為了一個問題爭的面紅耳赤,在這個過程中我們驚喜的看到生在交流和動手操作過程中得到了提高。通過自己的實踐證明,學生發現三角形的內角和的確是180度。

      總之,在教學空間與圖形的內容時,一定要讓學生看到“圖形",讓學生想象"空間”。

    《三角形內角和》教學設計范文6

      學情分析:

      學生已經掌握了角的概念、角的分類和角的度量等知識。在本課之前,學生又掌握了三角形的穩定性研究了三角形的分類。這些都為進一步研究三角形內角和作了知識儲備和心理準備,為本課內容的教學作了鋪墊。三角形的內角和是三角形的一個重要性質。它有助于理解三角形的三個內角之間的關系,是進一步學習、研究幾何問題的基礎。

      教學目標:

      1、知識與技能:通過操作活動探索發現和驗證“三角形的內角和是180度”的規律。

      2、過程與方法:通過量一量、剪一剪、拼一拼,培養學生的合作能力、動手實踐能力,并運用新知識解決問題的能力。

      3、情感態度:使學生體驗數學學習成功的喜悅,激發學生主動學習數學的興趣。

      教學重點:

      探索發現和驗證三角形的內角和是180度。

      教學難點:

      對不同探究方法的指導和學生對規律的靈活應用。

      教具準備:

      教師準備:多媒體課件、不同類形大小不一的三角形若干個、記錄表

      學生準備:量角器、直尺、剪刀

      教學過程:

      一、激趣導入

      多媒體展示三角形

      出示謎語:形狀似座山,穩定性能堅

      三竿首尾連,學問不簡單?(打一圖形名稱)

     。A設:三角形)

      師:誰能介紹介紹三角形?

     。ㄉ1:三角形有三條邊、三個頂點、三個角。

      生2:三角形按角分類,分為鈍角三角形、銳角三角形、直角三角形。)

      師:你喜歡哪種三角形?(鈍角三角形、銳角三角形、直角三角形)

      師:同學們會畫三角形嗎?請你在練習本上畫一個你喜歡的三角形。

      師:鈍角、直角、銳角三角形三兄弟吵起來了?我們快去看一看。

      師:今天我們就來研究一下三角形的內角和。

      二、學習目標

      1、通過動手操作,使學生理解并掌握三角形內角和是180度的結論。

      2、能運用三角形的內角和是180度這一規律,求三角形中未知角的度數。

      3、培養動手動腦及分析推理能力。

      三、自主學習(展示量角法)

      1.理解三角形的內角、內角和

     。1)板書展示三角形

      師:要想知道什么是三角形的內角和,我們得先知道什么是三角形的內角?(三角形里面的三個角都是三角形的內角。)

      師:你能過來指指嗎?同意嗎?內角有幾個?

      師:為了研究方便,我們把三角形的三個內角分別標上∠1、∠2、∠3。

      師:你能像老師一樣把你的三角形標上∠1、∠2、∠3嗎?

     。2)三角形的內角和

      師:什么是三角形的內角和?

     。ㄈ切稳齻角的度數的和,就是三角形的內角和,即:∠1+∠2+∠3)

      師:就是把∠1+∠2+∠3加起來。

      師:根據我們以前的經驗,我們怎么知道∠1、∠2、∠3的度數呢?(預設:用量角器量)

      師:請同學們拿出量角器,量一量你畫的三角形的三個內角,并算出他們的和。(4分鐘)

      學生測量(1分40)匯報結果(5人)。

      教師填寫測量匯報單。

      師:觀察匯報的結果,你有什么發現?(所有三角形內角和度數不一樣、三角形內角和都在180度左右)

      四、合作探究

      師:這是同學們親自測量發現的',沒有得到統一的結果,這個辦法不能使人信服,有沒有別的方法驗證?老師給每個小組都提供了很多個三角形,現在請你們以小組為單位,拿出三角形來研究研究三角形的內角和到底是多少度。?(8分鐘)(剪拼法)

      1、操作驗證探索三角形內角和的規律(6分鐘)

     。1)操作驗證:小組合作

      拿出裝有學具的信封[信封里面有老師為學生事先準備的各種類型的三角形若干個(小組之間的三角形大小都不同)];拿出自備的直尺?剪刀

     。ɡ蠋熞o學生充裕的時間,保證學生能真正地試驗,操作和探索,通過量一量、折一折、拼一拼、畫一畫等方式去探究問題。)

      2、學生匯報

     。1)轉化法:

      生:兩個同樣的直角三角形可以拼成一個長方形,長方形每個直角都是90度,內角和就是360度,所以三角形的內角和就是360度的一半180度。

      師:他們用長方形的內角和來研究今天所學的知識,得到三角形的內角和是180度。

     。2)折拼法

      生:把三角形三個內角分別向下邊折疊,拼成了一個平角,平角是180度,所以三角形的內角和是180度。

      師:他們是用折拼法驗證三角形的內角和是180度(動手能力真強)

     。3)剪拼法

      生:把三角形三個內角撕下來,拼成一個平角,平角是180,所以三角形的內角和是180度。(師:提問怎樣能很快的找到三個角?把他們做上標記。)

      標記上之后再拼一拼,可見標記的方法很科學。(20分鐘)

      3、教師演示

      師:我們再來感受一下怎么驗證三角形的內角和的?

      師:這是什么三角形?把他折一折。

      師:這是什么三角形?我們也可以把他折一折。你有什么發現?(折完以后都有一個平角,平角是180度,所以三角形的內角和是180度)

      師分別通過剪拼法驗證直角三角形、鈍角三角形、銳角三角形內角和。

      師:注意觀察。

      師:演示完畢有什么發現?(預設這些三角形剪接后都拼成了平角)平角是180度,所以三角形的內角和是180度。

      師:剛剛我們研究了什么三角形。他們的內角和都是180度,那我們研究的這些三角形能不能代表所有的三角形,能。(因為三角形按角分類只能分成這三種。)(22分鐘)

      4、演示任意一個三角形的內角和都是180度。

      出示一些三角形,讓學生指出內角和。

      師:你有什么發現?(無論是什么樣的三角形他的內角和都是180度,與三角形的形狀大小沒有關系。)(板書三角形的內角和是180度。)

      師:那我們再看看剛剛匯報的結果。為什么之前測量的時候并沒有得到這樣得到結果呢?(測量的不夠精確,存在誤差)

      師:如果測量儀器再精密一些,測量的更準確一些都可以得到三角形內角和是180度,F在確定這個結論了嗎?(25分鐘)

      師:除了這節課大家想到的方法,還有很多方法也能證明三角形的內角和是180°到初中我們還有更嚴密的方法證明三角形的內角和是180°。早在300多年前就有一位法國著名的科學家帕斯卡,他在12歲時就驗證了任何三角形的內角和都是180°

      師:你們能用今天的發現做一些練習嗎?

      五、測評反饋

      1、判斷。

     。1)直角三角形的兩個銳角的和是90°。

     。2)一個等腰三角形的底角可能是鈍角。

     。3)三角形的內角和都是180°,與三角形的大小無關。

      4、剪一剪。

      把一個三角形紙板沿直線剪一刀,剩下的紙板的內角和是多少度?

      六、課后作業

      69頁第1題、第3題。

      七、板書設計

    【《三角形內角和》教學設計】相關文章:

    《三角形的內角和》教學設計04-21

    三角形內角和教學設計06-10

    《三角形的內角和》教學設計05-08

    《三角形內角和》教學設計05-03

    三角形內角和教學設計02-13

    《三角形內角和》的教學設計范文02-07

    (必備)三角形內角和教學設計12-18

    三角形內角和教學設計(優)12-26

    三角形內角和教學設計14篇06-12

    黄频国产免费高清视频_富二代精品短视频在线_免费一级无码婬片aa_精品9E精品视频在线观看