• 《抽屜原理》教學實錄

    時間:2022-06-29 10:35:10 語文 我要投稿

    《抽屜原理》教學實錄

      【教學內容】

    《抽屜原理》教學實錄

      《義務教育課程標準實驗教科書·數學》六年級下冊第68頁。

      【教學目標】

      1.經歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。

      2. 通過操作發展學生的類推能力,形成比較抽象的數學思維。

      3. 通過“抽屜原理”的靈活應用感受數學的魅力。

      【教學重點】

      經歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

      【教學難點】

      理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

      【教具、學具準備】

      每組都有相應數量的盒子、鉛筆、書。

      【教學過程】

      一、課前游戲引入。

      師:同學們在我們上課之前,先做個小游戲:老師這里準備了4把椅子,請5個同學上來,誰愿來?(學生上來后)

      師:聽清要求 ,老師說開始以后,請你們5個都坐在椅子上,每個人必須都坐下,好嗎?(好)。這時教師面向全體,背對那5個人。

      師:開始。

      師:都坐下了嗎?

      生:坐下了。

      師:我沒有看到他們坐的情況,但是我敢肯定地說:“不管怎么坐,總有一把椅子上至少坐兩個同學”我說得對嗎?

      生:對!

      師:老師為什么能做出準確的判斷呢?道理是什么?這其中蘊含著一個有趣的數學原理,這節課我們就一起來研究這個原理。下面我們開始上課,可以嗎?

      【點評】教師從學生熟悉的“搶椅子”游戲開始,讓學生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學,使學生明確這是現實生活中存在著的一種現象,激發了學生的學習興趣,為后面開展教與學的活動做了鋪墊。

      二、通過操作,探究新知

      (一)教學例1

      1.出示題目:有3枝鉛筆,2個盒子,把3枝鉛筆放進2個盒子里,怎么放?有幾種不同的放法?

      師:請同學們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據學生擺的情況,師板書各種情況 (3,0) (2,1)

      【點評】此處設計教師注意了從最簡單的數據開始擺放,有利于學生觀察、理解,有利于調動所有的學生積極參與進來。

      師:5個人坐在4把椅子上,不管怎么坐,總有一把椅子上至少坐兩個同學。3支筆放進2個盒子里呢?

      生:不管怎么放,總有一個盒子里至少有2枝筆?

      是:是這樣嗎?誰還有這樣的發現,再說一說。

      師:那么,把4枝鉛筆放進3個盒子里,怎么放?有幾種不同的放法?請同學們實際放放看。(師巡視,了解情況,個別指導)

      師:誰來展示一下你擺放的情況?(指名擺)根據學生擺的情況,師板書各種情況。

      (4,0,0)

      (3,1,0)

      (2,2,0)

      (2,1,1),

      師:還有不同的放法嗎?

      生:沒有了。

      師:你能發現什么?

      生:不管怎么放,總有一個盒子里至少有2枝鉛筆。

      師:“總有”是什么意思?

      生:一定有

      師:“至少”有2枝什么意思?

      生:不少于兩只,可能是2枝,也可能是多于2枝?

      師:就是不能少于2枝。(通過操作讓學生充分體驗感受)

      師:把3枝筆放進2個盒子里,和把4枝筆飯放進3個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。這是我們通過實際操作現了這個結論。那么,我們能不能找到一種更為直接的方法,只擺一種情況,也能得到這個結論呢?

      學生思考——組內交流——匯報

      師:哪一組同學能把你們的想法匯報一下?

      組1生:我們發現如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進哪一個盒子里,總有一個盒子里至少有2枝鉛筆。

      師:你能結合操作給大家演示一遍嗎?(學生操作演示)

      師:同學們自己說說看,同位之間邊演示邊說一說好嗎?

      師:這種分法,實際就是先怎么分的?

      生眾:平均分

      師:為什么要先平均分?(組織學生討論)

      生1:要想發現存在著“總有一個盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那個盒子里,一定會出現“總有一個盒子里一定至少有2枝”。

      生2:這樣分,只分一次就能確定總有一個盒子至少有幾枝筆了?

      師:同意嗎?那么把5枝筆放進4個盒子里呢?(可以結合操作,說一說)

      師:哪位同學能把你的想法匯報一下,

      生:(一邊演示一邊說)5枝鉛筆放在4個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。

      師:把6枝筆放進5個盒子里呢?還用擺嗎?

      生:6枝鉛筆放在5個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。

      師:把7枝筆放進6個盒子里呢?

      把8枝筆放進7個盒子里呢?

      把9枝筆放進8個盒子里呢?……

     。

      你發現什么?

      生1:筆的枝數比盒子數多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。

      師:你的發現和他一樣嗎?(一樣)你們太了不起了!同桌互相說一遍。

      【點評】教師關注了“抽屜原理”的最基本原理,物體個數必須要多于抽屜個數,化繁為簡,此處確實有必要提領出來進行教學。在學生自主探索的基礎上,教師注意引導學生得出一般性的結論:只要放的鉛筆數盒數多1,總有一個盒里至少放進2支。通過教師組織開展的扎實有效的教學活動,學生學的有興趣,發展了學生的類推能力,形成比較抽象的數學思維。

      2.解決問題。

      (1)課件出示:5只鴿子飛回4個鴿籠,至少有2只鴿子要飛進同一個鴿籠里,為什么?

      (學生活動—獨立思考 自主探究)

      (2)交流、說理活動。

      師:誰能說說為什么?

      生1:如果一個鴿籠里飛進一只鴿子,最多飛進4只鴿子,還剩一只,要飛進其中的一個鴿籠里。不管怎么飛,至少有2只鴿子要飛進同一個鴿籠里。

      生2:我們也是這樣想的。

      生3:把5只鴿子平均分到4個籠子里,每個籠子1只,剩下1只,放到任何一個籠子里,就能保證至少有2只鴿子飛進同一個籠里。

      生4:可以用5÷4=1……1,余下的1只,飛到任何一個鴿籠里都能保證至少有2只鴿子飛進一個個籠里,所以,“至少有2只鴿子飛進同一個籠里”的結論是正確的。

      師:許多同學沒有再擺學具,證明這個結論是正確的,用的什么方法?

      生:用平均分的方法,就能說明存在“總有一個鴿籠至少有2只鴿子飛進一個個籠里”。

      師:同意嗎?(生:同意)老師把這位同學說的算式寫下來,(板書:5÷4=1……1)

      師:同位之間再說一說,對這種方法的理解。

      師:現在誰能說說你對“總有一個鴿籠里至少飛進2只鴿子的理解”

      生:我們發現這是必然存在的一個現象,不管鴿子怎樣飛回鴿籠,一定會有一個鴿籠里至少有2只鴿子。

      師:同學們都有這個發現嗎?

      生眾:發現了。

      師:同學們非常了不起,善于運用觀察、分析、思考、推理、證明的方法研究問題,得出結論。同學們的思維也在不知不覺中提升了許多,那么讓我們再來看這樣一組問題。

      (二)教學例2

      1.出示題目:把5本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?

      把7本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?

      把9本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?

      (留給學生思考的空間,師巡視了解各種情況)

      2.學生匯報。

      生1:把5本書放進2個抽屜里,如果每個抽屜里先放2本,還剩1本,這本書不管放到哪個抽屜里,總有一個抽屜里至少有3本書。

      板書:5本 2個 2本…… 余1本 (總有一個抽屜里至有3本書)

      7本 2個 3本…… 余1本(總有一個抽屜里至有4本書)

      9本 2個 4本…… 余1本(總有一個抽屜里至有5本書)

      師:2本、3本、4本是怎么得到的?生答完成除法算式。

      5÷2=2本……1本(商加1)

      7÷2=3本……1本(商加1)

      9÷2=4本……1本(商加1)

      師:觀察板書你能發現什么?

      生1:“總有一個抽屜里的至少有2本”只要用 “商+ 1”就可以得到。

      師:如果把5本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?

      生:“總有一個抽屜里的至少有3本”只要用5÷3=1本……2本,用“商+ 2”就可以了。

      生:不同意!先把5本書平均分放到3個抽屜里,每個抽屜里先放1本,還剩2本,這2本書再平均分,不管分到哪兩個抽屜里,總有一個抽屜里至少有2本書,不是3本書。

      師:到底是“商+1”還是“商+余數”呢?誰的結論對呢?在小組里進行研究、討論。

      交流、說理活動:

      生1:我們組通過討論并且實際分了分,結論是總有一個抽屜里至少有2本書,不是3本書。

      生2:把5本書平均分放到3個抽屜里,每個抽屜里先放1本,余下的2本可以在2個抽屜里再各放1本,結論是“總有一個抽屜里至少有2本書”。

      生3∶我們組的結論是5本書平均分放到3個抽屜里,“總有一個抽屜里至少有2本書”用“商加1”就可以了,不是“商加2”。

      師:現在大家都明白了吧?那么怎樣才能夠確定總有一個抽屜里至少有幾個物體呢?

      生4:如果書的本數是奇數,用書的本數除以抽屜數,再用所得的商加1,就會發現“總有一個抽屜里至少有商加1本書”了。

      師:同學們同意吧?

      師:同學們的這一發現,稱為“抽屜原理”,“ 抽屜原理”又稱“鴿籠原理”,最先是由19世紀的德國數學家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應用!俺閷显怼钡膽檬乔ё內f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。下面我們應用這一原理解決問題。

      3.解決問題。71頁第3題。(獨立完成,交流反饋)

      小結:經過剛才的探索研究,我們經歷了一個很不簡單的思維過程,我們獲得了解決這類問題的好辦法,下面讓我們輕松一下做個小游戲。

      【點評】在這一環節的教學中教師抓住了假設法最核心的思路就是用“有余數除法” 形式表示出來,使學生學生借助直觀,很好的理解了如果把書盡量多地“平均分”給各個抽屜里,看每個抽屜里能分到多少本書,余下的書不管放到哪個抽屜里,總有一個抽屜里比平均分得的書的本數多1本。特別是對“某個抽屜至少有書的本數”是除法算式中的商加“1”, 而不是商加“余數”,教師適時挑出針對性問題進行交流、討論,使學生從本質上理解了“抽屜原理”。

      三、應用原理解決問題

      師:我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請五位同學每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請大家猜測一下,同種花色的至少有幾張?為什么?

      生:2張/因為5÷4=1…1

      師:先驗證一下你們的猜測:舉牌驗證。

      師:如有3張同花色的,符合你們的猜測嗎?

      師:如果9個人每一個人抽一張呢?

      生:至少有3張牌是同一花色,因為9÷4=2…1

      四、全課小結

      【點評】當學生利用有余數除法解決了具體問題后,教師引導學生總結歸納這一類“抽屜問題”的一般規律,使學生進一步理解掌握了“抽屜原理”。

    【《抽屜原理》教學實錄】相關文章:

    《抽屜原理》課堂教學實錄07-05

    抽屜原理名師課堂實錄07-02

    《抽屜原理》教學設計02-22

    抽屜原理教學設計02-01

    抽屜原理優秀教學設計03-05

    抽屜原理教案07-09

    《抽屜原理》教學設計15篇02-22

    《抽屜原理》教學設計(15篇)02-22

    抽屜原理教學設計15篇03-12

    抽屜原理教學設計(15篇)03-12

    黄频国产免费高清视频_富二代精品短视频在线_免费一级无码婬片aa_精品9E精品视频在线观看