• 二次函數知識點總結

    時間:2022-12-19 17:46:20 總結范文 我要投稿
    • 相關推薦

    二次函數知識點總結

      總結是指社會團體、企業單位和個人在自身的某一時期、某一項目或某些工作告一段落或者全部完成后進行回顧檢查、分析評價,從而肯定成績,得到經驗,找出差距,得出教訓和一些規律性認識的一種書面材料,它可以給我們下一階段的學習和工作生活做指導,快快來寫一份總結吧。但是總結有什么要求呢?以下是小編精心整理的二次函數知識點總結,僅供參考,希望能夠幫助到大家。

    二次函數知識點總結

    二次函數知識點總結1

      二次函數概念

      一般地,把形如y=ax2+bx+c(其中a、b、c是常數,a≠0,b,c可以為0)的函數叫做二次函數,其中a稱為二次項系數,b為一次項系數,c為常數項。x為自變量,y為因變量。等號右邊自變量的最高次數是2。二次函數圖像是軸對稱圖形。

      注意:“變量”不同于“自變量”,不能說“二次函數是指變量的最高次數為二次的多項式函數”!拔粗獢怠敝皇且粋數(具體值未知,但是只取一個值),“變量”可在實數范圍內任意取值。在方程中適用“未知數”的概念(函數方程、微分方程中是未知函數,但不論是未知數還是未知函數,一般都表示一個數或函數——也會遇到特殊情況),但是函數中的字母表示的是變量,意義已經有所不同。從函數的定義也可看出二者的差別,如同函數不等于函數的關系。

      二次函數公式大全

      二次函數

      I.定義與定義表達式

      一般地,自變量x和因變量y之間存在如下關系:

      y=ax2+bx+c(a,b,c為常數,a≠0)

      則稱y為x的二次函數。

      二次函數表達式的.右邊通常為二次三項式。

      II.二次函數的三種表達式

      一般式:y=ax2;+bx+c(a,b,c為常數,a≠0)

      頂點式:y=a(x-h)2;+k [拋物線的頂點P(h,k)]

      交點式:y=a(x-x1)(x-x2) [僅限于與x軸有交點A(x1,0)和 B(x2,0)的拋物線]

      注:在3種形式的互相轉化中,有如下關系:

      h=-b/2a k=(4ac-b2;)/4a x1,x2=(-b±√b2;-4ac)/2a

      III.二次函數的圖象

      在平面直角坐標系中作出二次函數y=x??的圖象,

      可以看出,二次函數的圖象是一條拋物線。

      IV.拋物線的性質

      1.拋物線是軸對稱圖形。對稱軸為直線

      x = -b/2a。

      對稱軸與拋物線唯一的交點為拋物線的頂點P。

      特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

      2.拋物線有一個頂點P,坐標為

      P [ -b/2a ,(4ac-b2;)/4a ]。

      當-b/2a=0時,P在y軸上;當Δ= b2-4ac=0時,P在x軸上。

      3.二次項系數a決定拋物線的開口方向和大小。

      當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

      |a|越大,則拋物線的開口越小。

      4.一次項系數b和二次項系數a共同決定對稱軸的位置。

      當a與b同號時(即ab>0),對稱軸在y軸左;

      當a與b異號時(即ab<0),對稱軸在y軸右。

      5.常數項c決定拋物線與y軸交點。

      拋物線與y軸交于(0,c)

      6.拋物線與x軸交點個數

      Δ= b2-4ac>0時,拋物線與x軸有2個交點。

      Δ= b2-4ac=0時,拋物線與x軸有1個交點。

      Δ= b2-4ac<0時,拋物線與x軸沒有交點。

      V.二次函數與一元二次方程

      特別地,二次函數(以下稱函數)y=ax2;+bx+c,

      當y=0時,二次函數為關于x的一元二次方程(以下稱方程),

      即ax2;+bx+c=0

      此時,函數圖象與x軸有無交點即方程有無實數根。

      函數與x軸交點的橫坐標即為方程的根。

    二次函數知識點總結2

      教學目標:

      (1)能夠根據實際問題,熟練地列出二次函數關系式,并求出函數的自變量的取值范圍。

      (2)注重學生參與,聯系實際,豐富學生的感性認識,培養學生的良好的學習習慣

      教學重點:能夠根據實際問題,熟練地列出二次函數關系式,并求出函數的自變量的取值范圍。

      教學難點:求出函數的自變量的取值范圍。

      教學過程:

      一、問題引新

      1.設矩形花圃的垂直于墻(墻長18)的一邊AB的長為_m,先取_的一些值,算出矩形的另一邊BC的長,進而得出矩形的面積ym2.試將計算結果填寫在下表的空格中,

      AB長_(m) 1 2 3 4 5 6 7 8 9

      BC長(m) 12

      面積y(m2) 48

      2._的值是否可以任意取?有限定范圍嗎?

      3.我們發現,當AB的長(_)確定后,矩形的面積(y)也隨之確定,y是_的函數,試寫出這個函數的關系式,教師可提出問題,(1)當AB=_m時,BC長等于多少m?(2)面積y等于多少? y=_(20-2_)

      二、提出問題,解決問題

      1、引導學生看書第二頁問題一、二

      2、觀察概括

      y=6_2 d= n /2 (n-3) y= 20 (1-_)2

      以上函數關系式有什么共同特點? (都是含有二次項)

      3、二次函數定義:形如y=a_2+b_+c(a、b、、c是常數,a≠0)的'函數叫做_的二次函數,a叫做二次函數的系數,b叫做一次項的系數,c叫作常數項.

      4、課堂練習

      (1) (口答)下列函數中,哪些是二次函數?

      (1)y=5_+1 (2)y=4_2-1

      (3)y=2_3-3_2 (4)y=5_4-3_+1

      (2).P3練習第1,2題。

      五、小結敘述二次函數的定義.

      第二課時:26.1二次函數(2)

      教學目標:

      1、使學生會用描點法畫出y=a_2的圖象,理解拋物線的有關概念。

      2、使學生經歷、探索二次函數y=a_2圖象性質的過程,培養學生觀察、思考、歸納的良好思維習慣。

      教學重點:使學生理解拋物線的有關概念,會用描點法畫出二次函數y=a_2的圖象

      教學難點:用描點法畫出二次函數y=a_2的圖象以及探索二次函數性質。

    二次函數知識點總結3

      當h>0時,y=a(_-h)^2的圖象可由拋物線y=a_^2向右平行移動h個單位得到,

      當h<0時,則向左平行移動|h|個單位得到.

      當h>0,k>0時,將拋物線y=a_^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(_-h)^2+k的圖象;

      當h>0,k<0時,將拋物線y=a_^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(_-h)^2+k的圖象;

      當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(_-h)^2+k的圖象;

      當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(_-h)^2+k的圖象;

      因此,研究拋物線y=a_^2+b_+c(a≠0)的圖象,通過配方,將一般式化為y=a(_-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

      2.拋物線y=a_^2+b_+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線_=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).

      3.拋物線y=a_^2+b_+c(a≠0),若a>0,當_≤-b/2a時,y隨_的增大而減小;當_≥-b/2a時,y隨_的增大而增大.若a<0,當_≤-b/2a時,y隨_的增大而增大;當_≥-b/2a時,y隨_的增大而減小.

      4.拋物線y=a_^2+b_+c的'圖象與坐標軸的交點:

      (1)圖象與y軸一定相交,交點坐標為(0,c);

      (2)當△=b^2-4ac>0,圖象與_軸交于兩點A(_?,0)和B(_?,0),其中的_1,_2是一元二次方程a_^2+b_+c=0

      (a≠0)的兩根.這兩點間的距離AB=|_?-_?|

      當△=0.圖象與_軸只有一個交點;

      當△<0.圖象與_軸沒有交點.當a>0時,圖象落在_軸的上方,_為任何實數時,都有y>0;當a<0時,圖象落在_軸的下方,_為任何實數時,都有y<0.

      5.拋物線y=a_^2+b_+c的最值:如果a>0(a<0),則當_=-b/2a時,y最小(大)值=(4ac-b^2)/4a.

      頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.

      6.用待定系數法求二次函數的解析式

      (1)當題給條件為已知圖象經過三個已知點或已知_、y的三對對應值時,可設解析式為一般形式:

      y=a_^2+b_+c(a≠0).

      (2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(_-h)^2+k(a≠0).

      (3)當題給條件為已知圖象與_軸的兩個交點坐標時,可設解析式為兩根式:y=a(_-_?)(_-_?)(a≠0).

      7.二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現.

    二次函數知識點總結4

      I.定義與定義表達式

      一般地,自變量_和因變量y之間存在如下關系:y=a_^2+b_+c

      (a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)則稱y為_的二次函數。

      二次函數表達式的右邊通常為二次三項式。

      II.二次函數的三種表達式

      一般式:y=a_^2+b_+c(a,b,c為常數,a≠0)

      頂點式:y=a(_-h)^2+k[拋物線的'頂點P(h,k)]

      交點式:y=a(_-_?)(_-_?)[僅限于與_軸有交點A(_?,0)和B(_?,0)的拋物線]

      注:在3種形式的互相轉化中,有如下關系:

      h=-b/2a k=(4ac-b^2)/4a _?,_?=(-b±√b^2-4ac)/2a

      III.二次函數的圖像

      在平面直角坐標系中作出二次函數y=_^2的圖像,可以看出,二次函數的圖像是一條拋物線。

      IV.拋物線的性質

      1.拋物線是軸對稱圖形。對稱軸為直線_=-b/2a。

      對稱軸與拋物線的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線_=0)

      2.拋物線有一個頂點P,坐標為:P(-b/2a,(4ac-b^2)/4a)當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在_軸上。

      3.二次項系數a決定拋物線的開口方向和大小。

      當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。

      4.一次項系數b和二次項系數a共同決定對稱軸的位置。

      當a與b同號時(即ab>0),對稱軸在y軸左;

      當a與b異號時(即ab<0),對稱軸在y軸右。

      5.常數項c決定拋物線與y軸交點。

      拋物線與y軸交于(0,c)

      6.拋物線與_軸交點個數

      Δ=b^2-4ac>0時,拋物線與_軸有2個交點。

      Δ=b^2-4ac=0時,拋物線與_軸有1個交點。

      Δ=b^2-4ac<0時,拋物線與_軸沒有交點。

      _的取值是虛數(_=-b±√b^2-4ac的值的相反數,乘上虛數i,整個式子除以2a)

      V.二次函數與一元二次方程

      特別地,二次函數(以下稱函數)y=a_^2+b_+c,

      當y=0時,二次函數為關于_的一元二次方程(以下稱方程),即a_^2+b_+c=0

      此時,函數圖像與_軸有無交點即方程有無實數根。函數與_軸交點的橫坐標即為方程的根。

    【二次函數知識點總結】相關文章:

    初中函數知識點總結07-29

    二次函數的教學設計04-01

    初中數學所有函數的知識點總結11-22

    二次函數復習評課稿03-16

    二次函數的教學設計10篇04-01

    高中函數基本性質知識點總結07-25

    高一數學函數知識點總結12-01

    初中數學一次函數知識點總結11-25

    初中數學正切函數的公式及其圖像的知識點07-16

    黄频国产免费高清视频_富二代精品短视频在线_免费一级无码婬片aa_精品9E精品视频在线观看