• 高一數學必修一知識點總結歸納

    時間:2022-05-15 13:42:43 總結范文 我要投稿
    • 相關推薦

    高一數學必修一知識點總結歸納

      總結是在某一時期、某一項目或某些工作告一段落或者全部完成后進行回顧檢查、分析評價,從而得出教訓和一些規律性認識的一種書面材料,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,因此好好準備一份總結吧。你所見過的總結應該是什么樣的?以下是小編幫大家整理的高一數學必修一知識點總結歸納,希望能夠幫助到大家。

    高一數學必修一知識點總結歸納

    高一數學必修一知識點總結歸納1

      反比例函數

      形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。

      自變量x的取值范圍是不等于0的一切實數。

      反比例函數圖像性質:

      反比例函數的圖像為雙曲線。

      由于反比例函數屬于奇函數,有f(—x)=—f(x),圖像關于原點對稱。

      另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

      上面給出了k分別為正和負(2和—2)時的函數圖像。

      當K>0時,反比例函數圖像經過一,三象限,是減函數

      當K<0時,反比例函數圖像經過二,四象限,是增函數

      反比例函數圖像只能無限趨向于坐標軸,無法和坐標軸相交。

      知識點:

      1、過反比例函數圖象上任意一點作兩坐標軸的`垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

      2、對于雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

    高一數學必修一知識點總結歸納2

      二次函數

      I.定義與定義表達式

      一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c

      (a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

      則稱y為x的二次函數。

      二次函數表達式的右邊通常為二次三項式。

      II.二次函數的三種表達式

      一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)

      頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]

      交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]

      注:在3種形式的互相轉化中,有如下關系:

      h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

      III.二次函數的圖像

      在平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線。

      IV.拋物線的性質

      1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。對稱軸與拋物線的.交點為拋物線的頂點P。

      特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

      2.拋物線有一個頂點P,坐標為

      P(-b/2a,(4ac-b^2)/4a)

      當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。

      3.二次項系數a決定拋物線的開口方向和大小。

      當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

      |a|越大,則拋物線的開口越小。

    高一數學必修一知識點總結歸納3

      1、二次函數y=ax^2,y=a(x—h)^2,y=a(x—h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:

      解析式

      頂點坐標

      對稱軸

      y=ax^2

     。0,0)

      x=0

      y=a(x—h)^2

     。╤,0)

      x=h

      y=a(x—h)^2+k

     。╤,k)

      x=h

      y=ax^2+bx+c

     。ā猙/2a,[4ac—b^2]/4a)

      x=—b/2a

      當h>0時,y=a(x—h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

      當h<0時,則向左平行移動|h|個單位得到。

      當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x—h)^2+k的圖象;

      當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x—h)^2+k的圖象;

      當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x—h)^2+k的圖象;

      當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x—h)^2+k的圖象;

      因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x—h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了。這給畫圖象提供了方便。

      2、拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=—b/2a,頂點坐標是(—b/2a,[4ac—b^2]/4a)。

      3、拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤—b/2a時,y隨x的增大而減;當x≥—b/2a時,y隨x的增大而增大。若a<0,當x≤—b/2a時,y隨x的增大而增大;當x≥—b/2a時,y隨x的增大而減小。

      4、拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

     。1)圖象與y軸一定相交,交點坐標為(0,c);

     。2)當△=b^2—4ac>0,圖象與x軸交于兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

     。╝≠0)的兩根。這兩點間的距離AB=|x?—x?|

      當△=0。圖象與x軸只有一個交點;

      當△<0。圖象與x軸沒有交點。當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的'下方,x為任何實數時,都有y<0。

      5、拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=—b/2a時,y最。ù螅┲=(4ac—b^2)/4a。

      頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值。

      6、用待定系數法求二次函數的解析式

     。1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

      y=ax^2+bx+c(a≠0)。

     。2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x—h)^2+k(a≠0)。

     。3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x—x?)(x—x?)(a≠0)。

      7、二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現。

    高一數學必修一知識點總結歸納4

      知識點1、集合與元素

      一個東西是集合還是元素并不是絕對的,很多情況下是相對的,集合是由元素組成的集合,元素是組成集合的元素。例如:你所在的班級是一個集合,是由幾十個和你同齡的同學組成的集合,你相對于這個班級集合來說,是它的'一個元素;而整個學校又是由許許多多個班級組成的集合,你所在的班級只是其中的一分子,是一個元素。班級相對于你是集合,相對于學校是元素,參照物不同,得到的結論也不同,可見,是集合還是元素,并不是絕對的

      知識點2、解集合問題的關鍵

      解集合問題的關鍵:弄清集合是由哪些元素所構成的,也就是將抽象問題具體化、形象化,將特征性質描述法表示的集合用列舉法來表示,或用韋恩圖來表示抽象的集合,或用圖形來表示集合,比如用數軸來表示集合,或是集合的元素為有序實數對時,可用平面直角坐標系中的圖形表示相關的集合等

    高一數學必修一知識點總結歸納5

      兩個平面的位置關系:

     。1)兩個平面互相平行的定義:空間兩平面沒有公共點

     。2)兩個平面的位置關系:

      兩個平面平行—————沒有公共點;兩個平面相交—————有一條公共直線。

      a、平行

      兩個平面平行的判定定理:如果一個平面內有兩條相交直線都平行于另一個平面,那么這兩個平面平行。

      兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。

      b、相交

      二面角

     。1)半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。

     。2)二面角:從一條直線出發的.兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

     。3)二面角的棱:這一條直線叫做二面角的棱。

     。4)二面角的面:這兩個半平面叫做二面角的面。

     。5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

     。6)直二面角:平面角是直角的二面角叫做直二面角。

      兩平面垂直

      兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥

      兩平面垂直的判定定理:如果一個平面經過另一個平面的一條垂線,那么這兩個平面互相垂直

      兩個平面垂直的性質定理:如果兩個平面互相垂直,那么在一個平面內垂直于交線的直線垂直于另一個平面。

    高一數學必修一知識點總結歸納6

      【基本初等函數】

      一、指數函數

     。ㄒ唬┲笖蹬c指數冪的運算

      1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈

      當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數。此時,的次方根用符號表示。式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開方數(radicand)。

      當是偶數時,正數的次方根有兩個,這兩個數互為相反數。此時,正數的正的次方根用符號表示,負的次方根用符號—表示。正的次方根與負的次方根可以合并成±(>0)。由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。

      注意:當是奇數時,當是偶數時,

      2、分數指數冪

      正數的分數指數冪的意義,規定:

      0的正分數指數冪等于0,0的.負分數指數冪沒有意義

      指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質也同樣可以推廣到有理數指數冪。

      3、實數指數冪的運算性質

     。ǘ┲笖岛瘮导捌湫再|

      1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R。

      注意:指數函數的底數的取值范圍,底數不能是負數、零和1。

      2、指數函數的圖象和性質

    高一數學必修一知識點總結歸納7

      一、集合及其表示

      1、集合的含義:

      “集合”這個詞首先讓我們想到的是上體育課或者開會時老師經常喊的“全體集合”。數學上的“集合”和這個意思是一樣的,只不過一個是動詞一個是名詞而已。

      所以集合的含義是:某些指定的對象集在一起就成為一個集合,簡稱集,其中每一個對象叫元素。比如高一二班集合,那么所有高一二班的同學就構成了一個集合,每一個同學就稱為這個集合的'元素。

      2、集合的表示

      通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作d?A。

      有一些特殊的集合需要記憶:

      非負整數集(即自然數集)N正整數集N_或N+

      整數集Z有理數集Q實數集R

      集合的表示方法:列舉法與描述法。

     、倭信e法:{a,b,c……}

     、诿枋龇ǎ簩⒓现械脑氐墓矊傩悦枋龀鰜。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}

     、壅Z言描述法:例:{不是直角三角形的三角形}

      例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

      強調:描述法表示集合應注意集合的代表元素

      A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數組元素(x,y),集合B中只有元素y。

      3、集合的三個特性

      (1)無序性

      指集合中的元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。

      例題:集合A={1,2},B={a,b},若A=B,求a、b的值。

      解:,A=B

      注意:該題有兩組解。

      (2)互異性

      指集合中的元素不能重復,A={2,2}只能表示為{2}

      (3)確定性

      集合的確定性是指組成集合的元素的性質必須明確,不允許有模棱兩可、含混不清的情況。

    高一數學必修一知識點總結歸納8

      對數函數的一般形式為,它實際上就是指數函數的反函數。因此指數函數里對于a的規定,同樣適用于對數函數。

      對于不同大小a所表示的函數圖形:

      可以看到對數函數的圖形只不過的指數函數的圖形的關于直線y=x的`對稱圖形,因為它們互為反函數。

     。1)對數函數的定義域為大于0的實數集合。

     。2)對數函數的值域為全部實數集合。

     。3)函數總是通過(1,0)這點。

     。4)a大于1時,為單調遞增函數,并且上凸;a小于1大于0時,函數為單調遞減函數,并且下凹。

     。5)顯然對數函數無界。

    【高一數學必修一知識點總結歸納】相關文章:

    高一政治必修一知識點總結歸納03-22

    高一歷史必修一知識點歸納03-31

    高一歷史必修二知識點歸納06-04

    高一歷史必修一知識點梳理歸納08-15

    高一必修2歷史知識點歸納06-04

    高一歷史必修二知識點歸納合集06-07

    高一數學知識點總結歸納09-08

    高一歷史必修二知識點歸納8篇06-04

    高一歷史必修二知識點歸納(8篇)06-04

    黄频国产免费高清视频_富二代精品短视频在线_免费一级无码婬片aa_精品9E精品视频在线观看