• 信號與系統重要知識點總結

    時間:2022-06-25 15:04:16 總結范文 我要投稿
    • 相關推薦

    信號與系統重要知識點總結

      【摘要】需要考信號與系統專業的同學們注意啦,本文整理匯總信號與系統重要知識點供參考。攜手大綱解析人第一時間解讀大綱,點擊免費報名。

    信號與系統重要知識點總結

      第一章信號與系統

      1、什么是信號?(了解基本概念)

      2、信號的至少五種分類。

      3、系統的至少四種分類。

      4、信號的基本運算(平移、反轉、尺度變換,再取取值區間)?蓞⒖祭}:P331.6(2)(4)----畫圖

      5、階躍函數和沖激函數的定義、性質

      6、P25圖1.5-3

      7、系統的性質P381.24

      8、對于動態系統,既具有分解特性、又具有零狀態線性和零輸入線性,則稱為線性系統。

      9、在建模方面,系統的數學描述方法可分為哪兩大類?輸入、輸出分析法又可以分成哪兩種方法?

      10、如果系統在任何時刻的響應(輸出信號)僅決定于該時刻的激勵(輸入信號),而與它過去的歷史狀況有關,就稱其為?如果系統在任意時刻的響應不僅與該時刻的激勵有關而且與它過去的歷史狀況有關,就稱之為?

      11、周期信號與非周期信號的判斷標準。如:

      12、當系統的激勵是連續信號時,若響應也是連續信號,則稱其為??當系統的激勵是離散信號時,若其響應也是離散信號,則稱其為連續系統與離散系統;旌鲜褂,稱為

      第二章連續系統的時域分析

      1、系統的零狀態響應與輸入信號有關,而與初始狀態無關;系統的零輸入響應與初始狀態有關,而與輸入信號無關。

      2、理解什么是沖激響應,什么是階躍響應,分別用什么符號來表示。(概念上)

      3、卷積積分的定義,會求卷積積分(尤其是特殊函數)。如:等公式的的靈活使用。例:例:P812.17(1)、(2)P802.16

      4、圖示法求解卷積積分。P62例2.3-1(課件)(此次不作為重點)

      5、掌握卷積積分的性質。P66-72

      6、清楚連續系統時域分析求解的是微分方程。

      第三章離散系統的時域分析

      1、理解單位序列及其響應的概念。

      2、單位序列卷積特性。

      3、卷積和的定義及其性質。例:;

      4、清楚離散系統時域分析求解的是差分方程。

      5、清楚P88-P90差分方程的齊次解也稱為?,特解也稱為?穩定系統自由響應也稱為?強迫響應也稱為?

      第四章連續系統的頻域分析

      1、掌握傅里葉級數展開式。P120-121

      2、掌握奇函數、偶函數、奇諧函數傅里葉系數的特點。P2024.10

      3、掌握周期矩形脈沖的頻譜特點。P129-132(主要是掌握那幾個關鍵點)

     。1)周期性信號的頻譜特點是離散譜,而非周期性信號的頻譜特點是連續譜。

      周期信號的頻譜包括幅度譜和相位譜。

      周期信號頻譜的特點包括離散性、諧波性和收斂性。

     。2)周期相同的脈沖,相鄰譜線間隔相同;脈沖寬度越窄,頻譜寬度越寬,頻帶內所含分量越多。

      單個矩形脈沖的頻帶寬度一般與其脈沖寬度τ有關,τ越大,則頻帶寬度越窄。

      周期性矩形脈沖信號的頻譜,脈沖周期T越長,譜線間隔越小。

      信號在時域中的擴展對應于其頻譜在頻域中壓縮。

      脈沖寬度一定的周期脈沖,周期T愈大,譜線間隔愈小,頻譜愈稠密;譜線的幅度愈小。

      周期相同的脈沖,相鄰譜線間隔相同;脈沖寬度越窄,兩零點之間的譜線數目越多,頻帶內所含分量越多。

      周期信號的頻帶寬度與脈沖寬度成反比。

     。3)周期信號的傅里葉變換(或頻譜密度函數)有無窮多個沖激函數組成,其強度為各相應幅度的2倍。

     。4)由信號的收斂性可知,信號的能量主要集中在低頻段。

      4、帕斯瓦爾恒等式表明,對于周期信號,在時域中求得的信號功率與在頻域中求得的信號功率相等。

      5、掌握奇異函數傅里葉變換P138-142

      6、掌握奇異函數傅里葉變換的性質P161表4-2P204(尤其像對稱性、頻域微分性質等)

      例:4.18(1)(2),4.20(2)(8)。書上例題

      7、正、余弦函數的傅里葉變換;一般周期函數的傅里葉變換公式。

      8、系統響應表達式。

      9、系統對于信號的作用大體可以分為哪兩類?

      10、函數與頻譜的特點:若函數是偶函數,則其頻譜密度函數是的實函數;若函數是奇函數,則其頻譜密度函數是的虛函數;若函數是非奇非偶函數,則其頻譜密度函數是的復函數。

      11、信號無失真傳輸的條件。(4.8-11b)12.掌握時域取樣定理,奈奎斯特頻率、周期;若從抽樣信號中恢復原信號,則所需低通濾波器的截止頻率。例:P2094.48等

      第五章連續系統的s域分析

      1、拉普拉斯變換的定義。P214式5.1-8、5.1-9(了解)

      2、記住常用信號的拉普拉斯變換。注意收斂域。

      3、掌握拉普拉斯變換的性質。P231表5-1(簡單的)例:P2645.4(3);5.6(若是假分式時,同樣會求)

      4、掌握拉普拉斯逆變換(部分分式展開法)。例:P2645.8(1)(3)(8)

      5、掌握連續系統的復頻域分析:由微分方程變為代數方程;系統函數的表達式;系統的s域框圖;電路的s域模型。

      例:P2675.23;P2695.36;P251例5.4-10

      6、用變換域的方法求解微分方程的零輸入響應、零狀態響應、全響應。P241例5.4-1

      第六章離散系統的z域分析

      1、z變換的定義。(P2736.1-8(a)(b))

      2、記住常用信號的z變換,注意收斂域。(P273式6.1-11、6.1-12等)

      3、掌握z變換的性質(尤其是初值終值等)。P292表6-1例:P3206.7,6.8

      4、掌握逆z變換(部分分式展開法)。P297例6.3-3

      5、s域與z域的對應關系。

      第七章系統函數

      1、連續系統和離散系統的系統函數的極點與響應函數的關系,以及系統的穩定性的關系。如:H(z)在單位圓內的極點所對應的響應序列都是衰減的,當時,響應趨近于零。極點全部在單位圓內的系統是穩定系統;

      H(s)在左半開平面的極點所對應的響應函數都是衰減的,當時,響應函數趨近于零。極點全部在左半開平面的系統是穩定的系統。

      2、系統函數的零極點圖。

      3、連續系統的穩定性準則-羅斯準則。例:

      4、離散系統的穩定性準則-朱里準則。例:

      5、掌握連續系統的s域分析及離散系統的z域分析:能夠根據微分方程或差分方程得到代數方程;根據或寫出微分方程或差分方程;給出或,能夠能根據梅森公式,準確畫出信號流圖、系統框圖;根據或能夠求出沖激響應或單位沖激序列;根據或能夠判斷是否存在頻率響應;根據信號流圖得到系統函數;根據框圖得到微分方程或差分方程或代數方程等等。(注意:單位圓必須包含在收斂域內才有頻率響應)

    【信號與系統重要知識點總結】相關文章:

    《信號與系統》考試大綱07-03

    哲學重要知識點總結04-09

    初中數學重要知識點的總結06-27

    高三數學重要知識點總結07-05

    教育學重要知識點總結07-03

    XP系統電腦無法搜索WIFI信號07-01

    小學語文重要知識點06-28

    高中化學重要知識點歸納總結07-02

    初中數學圓的定義重要知識點總結06-28

    數學絕對值的重要知識點總結06-28

    黄频国产免费高清视频_富二代精品短视频在线_免费一级无码婬片aa_精品9E精品视频在线观看