• 高一數學與函數概念知識點總結

    時間:2022-06-25 00:59:54 總結范文 我要投稿
    • 相關推薦

    高一數學集合與函數概念知識點總結

      一、集合有關概念

    高一數學集合與函數概念知識點總結

      1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

      2、集合的中元素的三個特性:

      1.元素的確定性;2.元素的互異性;3.元素的無序性

      說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

      (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

      (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

      (4)集合元素的三個特性使集合本身具有了確定性和整體性。

      3、集合的表示:{}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

      1.用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

      2.集合的表示方法:列舉法與描述法。

      注意。撼S脭导捌溆浄ǎ

      非負整數集(即自然數集)記作:N

      正整數集N*或N+整數集Z有理數集Q實數集R

      關于屬于的概念

      集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作aA,相反,a不屬于集合A記作a?A

      列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。

      描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。

     、僬Z言描述法:例:{不是直角三角形的三角形}

     、跀祵W式子描述法:例:不等式x-32的解集是{x?R|x-32}或{x|x-32}

      4、集合的分類:

      1.有限集含有有限個元素的集合

      2.無限集含有無限個元素的集合

      3.空集不含任何元素的集合例:{x|x2=-5}

      二、集合間的基本關系

      1.包含關系子集

      注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

      反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

      2.相等關系(55,且55,則5=5)

      實例:設A={x|x2-1=0}B={-1,1}元素相同

      結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

     、偃魏我粋集合是它本身的子集。AA

     、谡孀蛹:如果AB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

     、廴绻鸄B,BC,那么AC

     、苋绻鸄B同時BA那么A=B

      3.不含任何元素的集合叫做空集,記為

      規定:空集是任何集合的子集,空集是任何非空集合的真子集。

      三、集合的運算

      1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

      記作AB(讀作A交B),即AB={x|xA,且xB}.

      2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:AB(讀作A并B),即AB={x|xA,或xB}.

      3、交集與并集的性質:AA=A,A=B=BA,AA=A,

      A=A,AB=BA.

      4、全集與補集

      (1)補集:設S是一個集合,A是S的一個子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

      記作:CSA即CSA={x|x?S且x?A}

      S

      CsA

      A

      (2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

      (3)性質:⑴CU(CUA)=A⑵(CUA)⑶(CUA)A=U

      二、函數的有關概念

      1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對 應,那么就稱f:AB為從集合A到集合B的一個函數.記作:y=f(x),xA.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對 應的y值叫做函數值,函數值的集合{f(x)|xA}叫做函數的值域.

      注意:2如果只給出解析式y=f(x),而沒有指明它的定義域,則函數的定義域即是指能使這個式子有意義的實數的集合;3函數的定義域、值域要寫成集合或區間的形式.

      定義域補充

      能使函數式有意義的實數x的集合稱為函數的定義域,求函數的定義域時列不等式組的主要依據是:(1)分式的分母不等于零;(2)偶次方根的被開方數不 小于零;(3)對數式的真數必須大于零;(4)指數、對數式的底必須大于零且不等于1.(5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它 的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等于零(6)實際問題中的函數的定義域還要保證實際問題有意義.

      (又注意:求出不等式組的解集即為函數的定義域。)

      構成函數的三要素:定義域、對應關系和值域

      再注意:(1)構成函數三個要素是定義域、對應關系和值域.由于值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即 稱這兩個函數相等(或為同一函數)(2)兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變量和函數值的字母無關。相同函數的判斷方 法:①表達式相同;②定義域一致(兩點必須同時具備)

      (見課本21頁相關例2)

      值域補充

      (1)、函數的值域取決于定義域和對應法則,不論采取什么方法求函數的值域都應先考慮其定義域.(2).應熟悉掌握一次函數、二次函數、指數、對數函數及各三角函數的值域,它是求解復雜函數值域的基礎。

      3.函數圖象知識歸納

      (1)定義:在平面直角坐標系中,以函數y=f(x),(xA)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數y=f(x),(xA)的圖象.

      C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上.即記為C={P(x,y)|y=f(x),xA}

      圖象C一般的是一條光滑的連續曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個交點的若干條曲線或離散點組成。

      (2)畫法

      A、描點法:根據函數解析式和定義域,求出x,y的一些對應值并列表,以(x,y)為坐標在坐標系內描出相應的點P(x,y),最后用平滑的曲線將這些點連接起來.

      B、圖象變換法(請參考必修4三角函數)

      常用變換方法有三種,即平移變換、伸縮變換和對稱變換

      (3)作用:

      1、直觀的看出函數的性質;2、利用數形結合的方法分析解題的思路。提高解題的速度。

      發現解題中的錯誤。

      4.快去了解區間的概念

      (1)區間的分類:開區間、閉區間、半開半閉區間;(2)無窮區間;(3)區間的數軸表示.

    【高一數學與函數概念知識點總結】相關文章:

    高一數學函數知識點總結12-01

    高一數學冪函數知識點總結07-03

    初中數學指數概念知識點總結06-27

    初中數學所有函數的知識點總結11-22

    高一數學函數知識總結11-22

    高二數學函數公式知識點總結06-28

    有關函數概念的發展歷史06-28

    高中數學函數知識點最新總結07-02

    初中函數知識點總結07-29

    教學案例《集合與函數概念》07-03

    黄频国产免费高清视频_富二代精品短视频在线_免费一级无码婬片aa_精品9E精品视频在线观看